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Abstract

Recent years have witnessed a remarkable spread of interest in decentralised
infrastructures for Internet services. Peer-to-Peer systems and overlay net-
works have given rise to a major paradigm shift and to novel challenges in
distributed systems research. Numerous projects from several research com-
munities and commercial organisations have started building and deploying
their own systems. Adoption, however, has been restricted to sparsely selected
areas, dominated by few applications.

Among the technical reasons for the limited availability of deployable sys-
tems is the complexity of their design and the incompatibility of systems and
frameworks. Applications are tightly coupled to a specific overlay implemen-
tation and the framework it uses. This leaves developers with two choices:
implementing their application based on the fixed combination of overlay, net-
working framework and programming language, or reimplementing the overlay
based on the desired application framework. Both approaches have their ob-
vious draw-backs.

Implementing an overlay, even as a reimplementation, is a task that ex-
hibits considerable challenges. Protocols have to be adapted, completed and
partially reverse engineered from the original system to implement them cor-
rectly. Message serialisations and interfaces have to be rewritten for the new
framework. State maintenance and event handling are programmed in very dif-
ferent ways in different environments, which typically requires their redesign.
Reimplementing an overlay for a new environment is therefore not necessarily
less work than designing a new one.

As for the alternative, being tied to a specific environment prevents the
application designer from freely choosing the best suited framework for the
specific application. Deploying different overlays in one application is only
possible if they were written for the same framework, and even then, running
multiple non-integrated overlays at the same time can become prohibitively
resource extensive. Testing with different overlay topologies and adapting
to different deployment environments is similarly hard in this scenario. The
current techniques used for overlay implementation turn out to become limiting
factors in the design of overlay applications.

The approach taken by this thesis tackles these issues at design time, at a
point long before integration problems arise. It presents a modelling framework
that allows to express overlay specific semantics in a platform-independent,
domain specific language called the Overlay Modelling Language, OverML.
A Model Driven Architecture maps these abstract overlay specifications to
concrete, framework specific implementations.

Applications based on OverML benefit from state sharing between different
overlays and from short topology implementations in the SQL-Like Overlay
Specification Language SLOSL. Their conciseness allows an easy adaptation of



SLOSL statements to specific quality-of-service requirements. The architecture
provides a clean separation between the generated implementation and hand-
written components through generic, event-driven interfaces.

To evaluate the approach, a series of topologies is exemplarily specified in
OverML and/or SLOSL. A complete walk-through from the specification to the
deployment of an OverML implemented overlay is additionally presented.

The major contribution of this thesis is the first complete design methodol-
ogy for the integrative, high-level development of portable, adaptable overlay
networks.



Zusammenfassung

Seit einigen Jahren zeigt sich ein stark zunehmendes Interesse an dezentra-
len Infrastrukturen für internetweite Dienste. Ausgelöst durch den massiven
Erfolg von Peer-to-Peer Systemen und Overlay-Netzwerken hat vor allem in
der Forschung ein Umdenken eingesetzt. Wie sehr diese Netzwerke als ernst-
hafte Alternative zu Client-Server Systemen wahrgenommen werden, belegt
die große Menge an Systemen, die Forschungsgruppen und Firmen weltweit
entworfen haben. Bemerkenswert ist jedoch auch, wie wenige dieser Systeme
den Weg in reale Anwendungen gefunden haben. Abgesehen von Programmen
zur Distribution großer Datenmengen (E-Donkey oder BitTorrent) gibt es nur
wenige Systeme mit nennenswerter Verbreitung.

Für diesen Mangel an Anwendungen gibt es durchaus auch technische
Gründe. Zu nennen sind hier vor allem die Komplexität dieser verteilten Sy-
steme und die Inkompatibilität der existierenden Implementierungen. Anwen-
dungen sind dabei sehr stark an die zu Grunde liegende Overlay-Software
gekoppelt. Ihren Entwicklern bieten sich heute nur zwei Möglichkeiten. Sie
können ihre Anwendungen für existierende Overlay-Implementierungen maß-
schneidern und sich auf die damit einhergehende Kombination aus Software-
Umgebung und Programmiersprache festlegen. Oder sie wählen eine Sprache
und Umgebung, die zu ihrer Anwendung passt und sind dann gezwungen, das
benötigte Overlay in dieser Umgebung neu zu implementieren. Aus Entwick-
lersicht kann keiner dieser Ansätze zufriedenstellend sein.

Ein bestehendes Overlay zu portieren ist nur selten weniger Aufwand als es
neu zu schreiben. Das liegt einerseits an der zumeist unzureichenden Spezifika-
tion, die eine Anpassung der Protokolle nach sich zieht. Teilweise muss dabei
sogar auf Reverse-Engineering der ursprünglichen Implementierung zurück-
gegriffen werden. Zudem ist die Implementierung von Nachrichtenverwaltung
und -serialisierung, Komponentenschnittstellen und Zustandsverwaltung sehr
stark von der verwendeten Software-Umgebung abhängig, so dass diese Teile
neu entwickelt werden müssen. Der hierfür benötigte Aufwand steht in keinem
Verhältnis zu der Erleichterung, die der Einsatz von Overlays für Anwendungs-
entwickler bringen soll.

Die Alternative ist die Übertragung der vom Overlay genutzten Software-
Umgebung auf die Anwendung. Dies macht jedoch nur dann Sinn, wenn Umge-
bung und Programmiersprache auch angemessene Unterstützung für die Ent-
wicklung der spezifischen Anwendung bieten. Selbst dann besteht jedoch wei-
terhin das Problem der Inkompatibilität zwischen Overlay-Implementierun-
gen, so dass ein späterer Wechsel oder auch nur Tests mit anderen Overlays
mit großem Aufwand verbunden sind. Eine gemeinsame Nutzung mehrerer
Overlays zur Laufzeit verbietet sich schon durch die fehlende Integration der
Systeme, da sich ihr Resourcenverbrauch zumeist summiert.

Die vorliegende Arbeit verfolgt einen umfassenderen Ansatz, der die be-



schriebenen Integrationsprobleme von vornherein umgeht und sowohl die Ent-
wicklung als auch den Umgang mit Overlay-Software vereinfacht. Er erlaubt
erstmals die plattformunabhängige, abstrakte Modellierung von Overlay-Im-
plementierungen. Die Beschreibung erfolgt in einer eigens zu diesem Zweck
entwickelten domänenspezifischen Sprache namens OverML, der Overlay Mo-
delling Language. Entsprechend dem Model-Driven-Architecture Ansatz er-
folgt anschließend eine maschinelle Übersetzung der abstrakten Modelle in
konkrete Implementierungen für spezifische Software-Umgebungen.

Auch für Anwendungen bietet OverML Vorteile. So werden die Topologieei-
genschaften von Overlay-Implementierungen durch die Verwendung der kom-
pakten, SQL-ähnlichen Sprache SLOSL übersichtlich und konfigurierbar und
lassen sich sehr leicht an spezielle Anforderungen anpassen. Zur Integration
mehrerer Overlays wird ein gemeinsamer Zustandsspeicher verwendet, der eine
Duplizierung des Verwaltungsaufwandes zu vermeiden hilft. Die Komponen-
tenarchitektur wird durch generische, datengesteuerte Schnittstellen entkop-
pelt, was zu einer sauberen Trennung von generiertem und handgeschriebenem
Code führt.

Zur Evaluierung werden verschiedene Overlay-Topologien spezifiziert. Zu-
dem erfolgt eine Beschreibung des vollständigen Entwicklungsablaufes von der
Spezifikation einer Overlay-Implementierung bis hin zu ihrem Einsatz in wech-
selnden Anwendungsumgebungen.

Somit stellt diese Arbeit eine neuartige Methodik zur Verfügung, die erst-
mals die integrative, abstrakte Entwicklung plattformunabhängiger, leicht ad-
aptierbarer Overlay-Implementierungen erlaubt.
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Since the early 1990’s, we can witness an exponential growth of parti-
cipation in the Internet. Only a few years ago, the main drive came from the
incremental inclusion of stationary PCs, either from individuals connecting
over Internet service providers or from entire enterprise networks. Today,
however, we can see that Internet connected devices have become smaller and
smaller and thus entered our daily mobile life.

RF ID
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Following the history of networked computing, we can see a major trend
starting from the one computer, many users pattern in the days of expensive
and large mainframes. It shifts towards a one computer, one user paradigm
in the home computer and PC era during the 1980’s and 1990’s and finally
becomes one user, many computers in today’s mobile environments. Powerful
cell phones and pocket computers (like PDAs) have found their wide-spread
use. Wireless Internet access points are steadily increasing their density. Em-
bedded devices like environmental sensors, surveillance cameras or stationary
public phones are increasingly connected through to Internet. RFID tags are
becoming more and more ubiquitous and, besides security and privacy con-
cerns, raise questions about a suitable global infrastructure.

On the other side of the digital gap1, poverty, socioeconomic background,
disabilities and general knowledge deficiencies prevent major parts of the world-
wide population from access to learning resources [DOT70]. This was found
to be a problem in post-industrial societies, but even more so in developing
countries. Especially for the latter, there is a substantial dispute whether the
growing ubiquity of Internet access and the freely available resources in the
World Wide Web can help in bridging the knowledge gap or not.

At the time of this writing, a number of projects world-wide are trying to
provide people from rural areas with hardware and Internet connections. A
common saying in this context is ”One child, One laptop”, which underlines
the hope for a major educational impact. Some of these projects were thus ini-
tiated by governmental interest in education (such as the Simputer2 in India),
others come from private initiatives (like the Children’s Machine3 initiated
by Nicholas Negroponte). While none of them is free of commercial interest,
they all aim to give poor, under-educated people access to globally available
knowledge and to enable their active participation in broader communication
through cheap, portable computers. Wide spread acceptance and increasing
quantities are expected to further decrease the costs of these systems.

The before mentioned technology centred initiatives have yet to see their
break-through. However, certain results have already become visible and have
shown to be rather promising. This further feeds the growing interest in con-
necting more and more people to knowledge resources. Global events like
the ”World Summit on the Information Society”, held by the United Nations
in 2003, encourage world-wide discussion on this topic and may well lead to
increasing support for sensible projects.

We currently see that a large part of the world population is still excluded
from the usage of Internet resources. This simple fact exhibits a non-negligible
chance that today’s Internet still has its major scalability issues lying ahead.

1http://en.wikipedia.org/w/index.php?title=Digital divide&oldid=72467327
2http://en.wikipedia.org/w/index.php?title=Simputer&oldid=68302591
3http://en.wikipedia.org/w/index.php?title=The Children%27s Machine&oldid=

72726137

http://en.wikipedia.org/w/index.php?title=Digital_divide&oldid=72467327
http://en.wikipedia.org/w/index.php?title=Simputer&oldid=68302591
http://en.wikipedia.org/w/index.php?title=The_Children%27s_Machine&oldid=72726137
http://en.wikipedia.org/w/index.php?title=The_Children%27s_Machine&oldid=72726137
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1.1 New Services in Globalising Environments

These emerging trends towards a globalising ubiquity of connectivity are and
will continue to be a driving force in the increasing requirements on Internet
services. The most widely used services today are e-mail (including mailing
lists, news-groups and SPAM) and the world wide web. Although mail and web
servers have shown a high scalability in every-day situations, their scalability
as centralised systems is still limited by hardware performance and financial
considerations.

Especially free and non-profit services, which continue to fill a major por-
tion of the Internet, show these insufficiencies. They simply cannot afford to
provision resources over demand to satisfy extraordinary request peaks. The
well-known results are slow and unpredictable responsiveness of mass mail
servers and news-groups (SourceForge mailing lists4, Yahoo-Groups5, . . . ).
Web-servers have the same problems with flash-crowds (“Slashdotting”, reac-
tion to Software announcements, catastrophic news of mass interest, . . . ). This
reveals the need for low-budget scalability of mass communication services.

Despite the fact that e-mail and world wide web are still the most widely
used services, the major part of the internationally generated network traf-
fic (60% and more6) is currently produced by file swapping networks such as
Gnutella7, KaZaA8, EDonkey/Overnet9 or BitTorrent10. Their whole purpose
is to make large files (from megabytes to several gigabytes) available for effi-
cient multi-source download. Since they came into use around the year 2000,
these systems have already proven their scalability to more than a million
concurrent users [SGG02] which is achieved mainly by the decentralisation of
their download service.

There is currently a major focus in research to see whether an equiva-
lent decentralisation makes sense for other services in these systems, such as
the search for files (as exemplified by Gnutella and Overnet), and how this
can be achieved in a similarly scalable way. First attempts to decentralise e-
mail [KRT03, MPR+03] and news dissemination [SMPD05] show the potential
of server-free, decentralised services.

Another major part of the current network traffic comes from server based
file distribution, like software updates, CD/DVD image downloads, etc. While
most of the files are still copied by FTP or HTTP to the clients or via RSync
between mirrors, systems like BitTorrent show that a partially decentralised

4http://www.sourceforge.net/
5http://groups.yahoo.com/
6http://www.cachelogic.com/home/pages/understanding/identifying.php

(Aug. 30, 2006)
7http://en.wikipedia.org/w/index.php?title=Gnutella&oldid=72696718
8http://www.kazaa.com/
9http://edonkey2000.com/

10http://www.bittorrent.com/

http://www.sourceforge.net/
http://groups.yahoo.com/
http://www.cachelogic.com/home/pages/understanding/identifying.php
http://en.wikipedia.org/w/index.php?title=Gnutella&oldid=72696718
http://www.kazaa.com/
http://edonkey2000.com/
http://www.bittorrent.com/
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approach can achieve much higher scalability [QS04]. It uses a centralised
server (or tracker) only for delegating requests for file slices to clients that
already downloaded them. The dominating work of copying these slices is
done by the participating clients that interact directly. This relieves the need
for expensive server replication and over-demand bandwidth provisioning on
the side of the distributor. Newer versions of BitTorrent even remove the
remaining bottleneck at the tracker by decentralising the client delegation.
They use an overlay network similar to the one in the Overnet file sharing
network to store the slice availability.

1.2 Requirements on Overlay Networks

Due to such promising achievements, interest in these decentralised overlay
networks has exploded over the last years, both in research and in practically
deployed applications. They are generally perceived as a comfortable building
block for large-scale distributed systems. The proven mass scalability of Over-
net, KaZaA or Gnutella, but also the extended BitTorrent design show their
appealing potential. They can be deployed where applications require decen-
tralised communication over highly scalable, self-maintaining infrastructures.

Especially self-maintenance is a crucial feature when it comes to large-scale
systems. Overlay networks are commonly constructed based on distributed,
self-organising algorithms that aim to achieve a high resilience against arbi-
trary failures. The ultimate goal is to build administration free virtual net-
works that provide simple communication abstractions and allow the deploy-
ment of diverse applications on top of them.

The recently proposed systems are rather diverse in their major charac-
teristics. An extensive overview is provided in the related work sections 9.1
and 9.2 of this thesis. One of the examples above was the Gnutella network,
which deploys a power-law topology. Despite the simplicity of its algorithms,
it achieves impressively good resilience properties and a low diameter of the
overall topology. Other overlays, like P-Grid [Abe01] or Chord [SMK+01], are
organised as distributed trees or rings, which allows them to execute efficient
lookup operations directly on top of their topology.

Having different characteristics also means that these networks solve dif-
ferent problems with varying effectiveness. It is rather difficult to find or build
overlays that can fulfil the entire range of requirements for a given, non-trivial
application. This holds especially in large systems which have to respond to
the diverse interests of thousands to millions of users. Hybrid search systems
like [LHSH04] are an example. They combine the characteristics of different
types of overlays to achieve a similar quality-of-service for finding rare items
as for the broader search of well replicated data.

The following (non-exhaustive) list tries to give an idea about the diversity
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of requirements that applications can pose on overlay networks. They may
benefit from

• (average) single-hop delivery for reduced latency

• (provably) good resilience for high reliability and availability

• rapid reconciliation when nodes join or fail

• practical deployability (in a specific scenario)

• high scalability to millions of participants in the Internet

• optimal performance in small installments and ad-hoc networks

• low maintenance overhead

• ping/ack at low rates (or none at all)

• low per-node degree and state

• high degree of freedom in optimal neighbour selection

• optimisability for high throughput or low latency

• good search properties for both needles and hay

Some of these properties are even mutually exclusive. Obviously, a combina-
tion of a low node degree and single-hop delivery will not result in a scalable
topology. Therefore, each specific application that runs on top of an overlay
will require a specific subset of these characteristics at the cost of others being
ignorable or even impossible. This subset determines the choice of the right
overlay.

As an example, overlay-multicast applications [RKCD01, ZH03] may prefer
a low or a high node degree. A low degree generally leads to deeper graphs
and higher end-to-end latency but allows for higher throughput at each node.
A higher degree reduces the tree depth and therefore the latency and the
probability of node failures along each path. It also tends to increase the
resilience against failing neighbours. Varying the degree may yield the desired
throughput versus latency and reliability tradeoff.

Distributed content based publish-subscribe systems (see chapter 2) are
another example. They base their routing decisions on filter matching. Filter
updates, especially to new nodes, can be costly depending on the complexity
of filters. In this setting, a small number of neighbours may turn out to be
more desirable to keep the number of updates low. As with multicast, however,
a higher degree may yield better performance for content forwarding, so the
right tradeoff is again application specific.

For relatively small overlays, single-hop delivery may be optimal and very
desirable. However, the overlay may have to switch to multi-hop delivery when
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the number of nodes increases dynamically or if the dynamism (or “churn
rate”) of the network exceeds a certain threshold [RB04].

In many use cases, the members of an overlay network form subgroups
at run-time, e.g. for better efficiency, resilience or security. This may in-
clude multicast groups, semantic clusters or functional clusters (like in Omi-
cron [DMS04]). These subgroups will most likely have different requirements
than the “global” overlay (after all, that is why they are formed in the first
place).

A low maintenance overhead is always desirable, while in small or well-
connected intra-organisational installations other properties, like rapid recon-
ciliation, may take precedence.

A quality-of-service aware overlay must provide very different service types
to applications, as different users usually have very different ideas about the
QoS they need.

So far, these requirements stayed at a rather abstract level. The second
chapter of this thesis aims to substantiate the diversity of the requirements
posed by applications and the characteristics provided by overlay networks.
It presents an extensive case study in the concrete field of publish-subscribe
applications. By building up a meaningful set of quality-of-service metrics for
this area, it provides a solid ground for the evaluation of overlay networks
against concrete requirements.

Section 2.3 uses the presented metrics for an exemplary evaluation of over-
lay based publish-subscribe systems. It tries to show the capabilities, weak-
nesses and limits of different systems. From this analysis, it becomes obvious
that no single overlay will ever satisfy the needs of all possible applications,
not even in a single application domain such as publish-subscribe. Even within
a specific application there may still be situations where a choice between dif-
ferent topologies makes sense. Having to make this decision at implementation
time (or even design time) is obviously premature, since it prevents tests with
different topologies as well as an adaptation at run-time.

As an approach towards the integration of similar overlay types, a common
API for structured overlays was proposed by Dabek and others [DZDS03]. This
allows an application to abstract from the specific details of different structured
overlays and use the one at hand.

The main problems, however, arise at a different level, which cannot be ap-
proached with an API. The available structured overlays continue to provide
distinct implementations in different frameworks and different programming
languages. Applications that want to deploy overlays can hardly support more
than one framework in one language. This complicates comparisons and ef-
fectively prevents a hybrid combination of overlay systems. Even if it was
possible to use them combined, the potential gain would be limited by the fact
that each overlay requires its own maintenance algorithm and introduces its
own overhead.
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Due to the current complexity of overlay implementations, porting an over-
lay between frameworks basically means reimplementing it, which is a huge
obstacle for application developers. In this context, the building block idea
degenerates into an additional block that has to be built rather than a helpful
support for the design of an application.

There were a few attempts to aid in the implementation of overlay networks,
mainly JXTA [JXT, JXT03], iOverlay [LGW04] and Macedon [RKB+04]. Sec-
tion 3.2 presents them in detail. However, the analysis following their descrip-
tion shows that they fail to make integrative, framework independent models
available to overlay designers and application integrators.

1.3 Integrative Design of Overlay Networks

As we will see further on in section 3.4, implementing overlay networks is far
from trivial. Implementations typically require between 10,000 and 30,000 lines
of source code. As distributed networking systems, overlay implementations
are often written in event-driven I/O patterns. This leads to counterintuitive
code modularisation, cross-cutting interdependencies between modules and
limited support for code reuse. These obstacles render the understanding of
the actual system and its topological features difficult.

As noted in 3.1, a simplification in overlay design requires high-level models
that capture the important characteristics of overlay networks. While the
componentisation of overlay software must respect the event-driven nature
of the running system, it is more important to encourage a clean, high-level
design of the implementation. The goal is to make it understandable for other
developers and application integrators without requiring additional, external
documentation.

The need to integrate different overlays into adaptable hybrid systems poses
further demands on the design process and its tool support. Different overlays
must be able to share their system state. Otherwise, the independent main-
tenance strategies cannot become aware of each other, which requires them
to duplicate their effort. Shared state also reduces code redundancy between
overlay implementations. Every participant has to store state about neigh-
bours and maintain its connections to them. A common ground for handling
neighbour state allows to move this functionality into middleware components.

The main characteristics of overlays result from their topology. As we will
see in chapter 3, however, the currently available models and abstractions for
these systems do not capture this part of their design. If the topology is meant
to become a readable (and thus understandable) part of overlay software, new
models are needed to support its design.

The topology perspective on overlay software, as described in section 4.1, is
an approach to make the five main functionalities in overlay networks visible in
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their implementation: topology rules, overlay routing, topology maintenance,
topology adaptation and topology selection.

Rules define the topology from the local point of view of each participating
node. Routing describes how to use the rules to forward messages. Adapta-
tion honours the fact that the rules may leave a certain degree of freedom in
neighbour selection and forwarding decisions and tries to optimise the topology
according to specific policies. Maintenance deals with the actions that must
be taken when the local view breaks the rules. Selection finally deals with the
integration of different topologies (i.e. rules, forwarding/maintenance schemes
and adaptation policies) to let an application select the right topology for its
current requirements.

Each overlay implementation must deal with these functionalities. This
motivates the design of a domain specific language called SLOSL (described in
chapter 5) for the platform independent implementation of rules and adapta-
tion policies. It is easily extended to support routing decisions defined in the
EDGAR language (6.3). To capture the entire design process of overlay imple-
mentations, and to provide high-level support for topology maintenance and
selection, this thesis proposes a Model Driven Architecture based on SLOSL, the
XML Overlay Modelling Language OverML (chapter 6) and the Node Views
system architecture (4.3).

OverML is a set of five domain specific languages for the area of overlay de-
sign. The combination of these languages allows for far-reaching, semantically
rich models of overlay systems.

NALA The Node Attribute Language specifies data schemas for the attributes
of overlay nodes. It serves as a common model for local state keeping.

SLOSL The SQL-Like Overlay Specification Language defines local views for
each node in the overlay. It describes the topology as the union of all
local views and expresses topology rules and adaptation strategies.

EDGAR The language defines Extensible Decision Graphs for Adaptive Rout-
ing. Based on the rules defined by SLOSL, it specifies the local routing
decisions taken by each node to forward messages through the topology.

HIMDEL The Hierarchical Message Description Language models layered mes-
sages based on NALA data types and SLOSL view data.

EDSL The Event-Driven State-machine Language defines overlay protocols
and connects implementation specific maintenance components with events
defined by the architecture, especially by the languages SLOSL and HIMDEL.

Chapter 8, as well as the various examples in other chapters, show the
broad applicability of these languages to the design of different overlays and
their topologies.
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1.4 Overview – how to read on

To give an idea of the diversity of requirements on overlay networks, the fol-
lowing chapter presents an extensive case study of a specific class of overlay
applications: distributed publish-subscribe systems. First, it derives quality-
of-service metrics that allow to compare systems from this area. They are used
in section 2.3 to show the differences between a number of well-known im-
plementations that deploy decentralised overlay networks to support publish-
subscribe at a global scale. Their different levels of quality-of-service make
a case for middleware architectures that integrate different systems. Only a
resource efficient integration allows applications to benefit from the diversity
of features that different systems provide.

A new methodology for the integrative, platform-independent, high-level
design of data-driven overlay networks is the major contribution of this the-
sis. Chapter 3 overviews different abstraction levels that are currently used in
overlay software. It shows the deficiencies of recent frameworks when requir-
ing a substantial simplification of the integrative, portable design of overlay
networks. The main reason is that current frameworks have largely focused
on networking and protocols. Section 4.1 replaces this focus by a new per-
spective that targets the main characteristics of overlay networks, which are
determined by their topology.

Taking the topology perspective on overlays, chapter 4 derives a new ar-
chitectural model for overlay design, the Node Views architecture. It underlies
the domain specific OverML languages that are presented in chapter 6, with
a special emphasis on SLOSL, a specification language for local decisions in
topologies (chapter 5). The OverML languages form the foundation of the
Model Driven Architecture proposed in this thesis. Chapter 7 finally sketches
ways of implementing common communication patterns using the new archi-
tecture.

Chapter 8 presents the current implementation of an Integrated Develop-
ment Environment (IDE) for overlay design, based on the OverML language,
as well as a mapping of the abstract design models to executable implementa-
tions. It finishes by presenting a complete walk-through from the specification
of an overlay to its deployment.

Related work in different areas as well as an overview of available overlay
networks is presented in chapter 9. The work is finally concluded by chapter 10.
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A Case Study:
Publish-Subscribe Overlay
Applications
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Figure 2.1: Distributed communication paradigms

Figure 2.1 shows the known paradigms for distributed communication. The
two on the left are in widespread use today. Following the examples from
the introduction, the e-mail service represents a messaging scheme, although
the internal server-to-server interaction is based on request-reply. Web and
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file servers are built on centralised request-reply interaction. In both cases,
the producer of data (i.e. the server) knows all receivers that initiated a
request and addresses them explicitly and directly for its reply, which is a
major problem for server scalability.

Commercial web server clusters already take a step towards higher scala-
bility through a variant of the anonymous request-reply scheme. They exploit
the indirection provided by DNS and load balancers to decouple service names
from servers and spread the load over a larger number of servers. Large sites
like the Amazon web shop1 or the Google search engine2 are prominent exam-
ples that make tens of thousands of servers available under the same name.
They can even be globally distributed over different locations, as Google shows.
Addressing works in a randomised way based on implicit request semantics
such as the host domain or preferred language of the client.

The original BitTorrent design uses request-reply for all services (finding
sources and downloading), but the tracker randomises the delegation to down-
load providers. Again, this shows ideas of anonymous (or delegated) request-
reply, which is even more visible in the newer overlay design of the system.
Current file swapping networks commonly use a delegated or anonymous form
of request-reply for search and direct request-reply for download.

As the examples show, the flavours of request-reply are the most widely
used paradigms. Simple variations of anonymous request-reply have been
adopted fairly often in the form of DNS delegation or centralised load-balancing.
Scalability is commonly achieved by delegating resource intensive tasks to a
large number of nodes, while keeping a single entry point for clients. Over-
all, the technical trend is clearly guided towards reduced knowledge at the
initiator.

An interesting and rather old example are mailing lists and news groups,
which deploy the fourth paradigm, publish-subscribe. Despite its appealing
simplicity, this scheme is so powerful that it can provide advantages to many
other Internet services, especially where scalability is an issue. The two bro-
kered paradigms on the right virtualise and decouple the connection between
consumers and producers of data. This inherently makes them very interesting
for decentralised communication infrastructures.

2.1 The Publish-Subscribe Paradigm

The system model of the publish-subscribe communication paradigm is sur-
prisingly simple. It provides three roles: publishers, subscribers and brokers.
Publishers (aka producers) provide information, advertise it and publish notifi-
cations about it. Subscribers (aka consumers) specify their interest and receive

1http://www.amazon.com
2http://www.google.com

http://www.amazon.com
http://www.google.com
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relevant information when it appears. Brokers mediate between the two by
selecting the right subscribers for each published notification. In the follow-
ing, the term “client” will additionally be used for publishers and subscribers
to distinguish their roles from the broker infrastructure. A more thorough
discussion of the publish-subscribe model is provided in [Fie05].

Broker
Infrastructure

Subscribernotify

Subscriber

notify

notify

Subscriber

notify

Publisher
publish

advertise

Publisher
publish

advertise

subscribe

subscribe

subscribe

subscribe

Figure 2.2: The publish-subscribe model

This scheme decouples publishers and subscribers and thus simplifies their
roles and interfaces considerably. The drawback is the infrastructure in the
form of brokers that is necessary to provide the publish-subscribe service. In
the mailing list example, the mailing list servers are brokers that mediate be-
tween authors and readers of e-mail, i.e. publishers and subscribers. Similarly,
in IP-Multicast [Dee91], the IP routers take the role of brokers.

However, publish-subscribe is not limited to mailing lists, where the broker
is a server that has a simple list of receivers available for each message type.
This case is commonly known as centralised subject based publish-subscribe
where consumers subscribe to a subject that producers explicitly assign to
their notifications. In content based publish-subscribe, subscriptions express
more general filters on the actual content of notifications. This scheme is both
more powerful and more complex than fixed lists of recipients.

An important property of the publish-subscribe model is the level of ab-
straction at which publishers and subscribers communicate. They are not
aware of the organisation of the infrastructure or of the size of the system.
There can be a single centralised broker, a cluster of them or a distributed
network of brokers. All that participants see is their specific brokers through
which communication partners are self-selecting by interest. This makes this
model appealing for highly scalable systems that need to hide varying com-
plexity and adaptable infrastructures from the participants.

However, finding a suitable infrastructure organisation is not possible with-
out further knowledge about the specific needs of the participants. If the in-
frastructure is supposed to provide a sufficient level of quality-of-service (QoS)
to all participants independent of the current scale or infrastructural organi-
sation, explicit QoS distinctions become vital to the system.
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2.2 Quality-of-Service in Publish-Subscribe

The publish-subscribe model suggests a number of different quality-of-service
(QoS) metrics, as described by the author in [BFM06]. Some are related to
subscriptions and single notifications while others describe end-to-end prop-
erties of flows of notifications. The following sections describe the specific
meaning of these metrics when requested by publishers or subscribers, in sub-
scriptions, notifications or advertisements. Their context in publish-subscribe
systems is briefly summarised at the beginning of each section (+).

Their implementation in a distributed publish-subscribe system then has
mainly two dimensions: The topological organisation of the brokers and the
local decisions of each broker regarding filtering, scheduling, etc. Their interac-
tion with and impact on the QoS metrics are briefly summarised in figure 2.3.

2.2.1 QoS at the Global Infrastructure Level

End-to-end latency, bandwidth and delivery guarantees form low-level prop-
erties of the broker infrastructure. In a centralised infrastructure in which the
client connections also implement QoS, there are ways to impose hard limits
on them. In any less predictable environment, especially distributed multi-hop
infrastructures, they should not be understood as real-time guarantees. Here
they become probabilistic options or even hints about preferences of clients.
Note that even hints can be helpful to the infrastructure if it has to determine
which notifications to drop from overfull queues or which broken inter-broker
connection to repair first.

Latency

+ Subscriptions - Subscribers request a publisher with a maximum delay.

The end-to-end latency between producers and consumers depends on the
number of broker hops between them, the travel time from hop to hop and the
time it takes each broker to forward a notification.

In a centralised system, the travel time between broker and clients gives a
hard lower bound and the additional forwarding time depends on the broker
load. Even in a distributed infrastructure, measured lower bounds can give
hints if a requested QoS level is achievable at all. In general, however, they do
not allow to give absolute guarantees in distributed systems.

A broker infrastructure can deal with latency requirements by pre-allocating
fixed paths between senders and receivers. This avoids the overhead of having
to establish connections on request.

A further speed-up can be achieved by tagging notifications and merging
them into channels [Fie05]. This approach effectively maps content-based fil-
tering to subject-based filtering and thus simplifies the routing on each broker
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along the path. Note, however, that such a mapping is not always possible as
it can lead to state explosion [Müh02]. The reduced expressiveness of channel
identifiers compared to content filters can also introduce excessive forwarding
of unwanted information. The most efficient form is obviously a mapping to
the network level through native IP-Multicast [Dee91, Hui99].

A combination of both measures may allow to reduce the path length by
skipping those brokers that only forward a stream to one or very few connec-
tions. Still, the observed latency may vary considerably over time, as Internet
paths commonly serve multiple concurrent streams. The optimal case is a
physical network with native quality-of-service provisioning and IP-Multicast.

Bandwidth

+ Advertisements - Producers specify the minimum and/or maximum band-
width necessary for the stream they produce.

+ Subscriptions - Subscribers restrict the maximum amount and size of no-
tifications they want to receive per time unit.

The overall bandwidth used by the system depends on the throughput per bro-
ker and the size of each notification. Today’s Internet-level connections tend
to be sufficiently dimensioned to allow many concurrent high-traffic streams,
but they usually do not provide physical quality-of-service and bandwidth pro-
visioning. This holds especially when streams cross the borders of autonomous
systems.

Therefore, bandwidth requirements should rather be regarded at a per-
broker level. If each broker knows the bandwidth that it can make locally
available to the infrastructure, this gives an upper bound for the throughput
of a path. Although not necessarily accurate, such an upper bound allows to
route notifications based on the highest free bandwidth on the neighbouring
brokers. It can be used to avoid high-traffic paths and to do local traffic
optimisation.

If channel merging is applied (as described for latency), the channels can
be tested for their capability of providing the required bandwidth. However,
the observed bandwidth in general purpose networks may show high variations
over time that cannot be foreseen.

Message priorities

+ Notifications - Producers specify the relative priority between notifications
that they produce themselves or their absolute priority compared to
other (foreign) notifications.

+ Subscriptions - Subscribers specify the relative priorities between their
subscriptions or the absolute importance of a subscription.
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As with latency and bandwidth, message priorities have both a per-broker side
and an end-to-end side to them. They are, however, easier to establish in a
distributed broker network than latency bounds, as their conception does not
aim to provide absolute or real-time guarantees.

Priorities between notifications can be used to control the local queues of
each broker which will eventually lead to their end-to-end application along a
path. Again, channels can be used to shorten the path for high-priority noti-
fications, the extreme case being to send them directly from the system entry
point to the recipients. More commonly, however, high-priority notifications
will be allowed to overtake those with a lower priority during the forwarding
and filtering process at each broker, subject to a weighted scheduling policy.
This increases the importance of their per-broker part.

Absolute subscription priorities can be merged on their delivery paths.
Only the maximum priority is required at the publisher end. Brokers further
down the path can store the more exact priorities for their forward scheduling
to local subscribers and neighbouring brokers.

Delivery guarantees

+ Subscriptions - Subscribers specify which notifications they must receive,
which are less important, and where duplication matters.

+ Notifications, Advertisements - Producers can specify if receivers should
be guaranteed to receive their notifications.

These guarantees can be as simple as a tag for notifications stating if they may
be dropped on the delivery path or not. It is even straight forward to merge this
tag from multiple subscriptions along the delivery path with a simple boolean
“and”. This approach is especially applicable in combination with message
priorities, where the least important message is the first to be dropped.

More demanding guarantees regard the completeness and duplication of
the delivery. Notifications can be delivered at least once, at most once or
exactly once to a subscriber, the latter being the combination of the first two.
If the infrastructure is not reliable itself, the first requirement can be achieved
by meshing which increases the delivery probability at the cost of generating
duplicates and thus increasing the message overhead. A request for at most
one delivery encourages either single path delivery or duplicate filtering before
the arrival at the subscribers.

In infrastructures with unreliable brokers, reputation systems or availabil-
ity histories may allow to route notifications through more reliable brokers
first. This lowers the chance of brokers failing during delivery or maliciously
suppressing notifications. However, this should be taken as a hint and by no
means as a guarantee since a history does not allow a reliable prediction of the
future availability or behaviour of network and brokers.
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Another problem with delivery guarantees regards temporarily disconnected
subscribers [CFH+03], e.g. in a mobile environment. The broker infrastruc-
ture must store notifications that were guaranteed to be delivered at least once
until the subscribers become available again. Note that this may be after an
arbitrarily long time or never, so in practice, the infrastructure may choose to
store notifications only for a reasonable time interval.

Finally, it is possible to define a quorum, i.e. to specify the minimum or
maximum number of senders that must receive a notification or the minimum
or exact number of receivers that a subscriber wants to subscribe to. In a
decoupled, brokered environment like publish-subscribe systems, where pub-
lishers and subscribers are not supposed to know anything about each other,
this criterion should only be available at an administrative level, e.g. within
scopes [FMG03].

Note that the requests of subscribers override the advertisements of pub-
lishers. If a publisher requests guaranteed delivery and all subscribers agree
that its notifications may be dropped, the infrastructure may ignore the re-
quest of the publisher. Subscriber requests are generally more important than
publisher requests, which become not much more than a hint or default to the
infrastructure.

2.2.2 QoS at the Notification and Subscription Level

A number of QoS properties touch the semantics of subscriptions and notifica-
tions. They are periodic or sporadic delivery, the order in which notifications
arrive, priorities between them, the duration of their validity and redundancy
of producers. Security issues like authentication or confidentiality also fall into
this scheme. A very important factor is the selectivity of subscriptions.

Expressiveness and Selectivity of Subscriptions

+ Subscriptions - Subscribers define their subscriptions in a specific lan-
guage.

Subscriptions can be expressed in different classes of languages, thus allowing
different levels of expressiveness. Simple subscriptions can contain a subject
for identity matches, whereas more complex ones can be augmented by fur-
ther attribute restrictions. The most complex subscriptions possible are filters
implemented as Turing complete computer programs.

All of these languages have a specific level of complexity with respect to
filter identity tests and merging, distributed matching, global message over-
head and false positives on delivery. The filter language therefore represents
a tradeoff between the local overhead at brokers or subscribers and the dis-
tributed overhead inside the broker infrastructure. In general, more complex
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languages can support a higher expressiveness and therefore a higher selectiv-
ity of subscriptions. This allows them to reduce the number of false positives
(or uninteresting notifications), but tends to make filter optimisations and
distributed matching more difficult.

The language is not necessarily the same within the entire infrastructure.
Scoped subgraphs [FMG03] may decide to provide languages internally that
have a different expressiveness than the outside world, and then convert be-
tween the two at the interfaces. Similarly, a broker may decide to accept com-
plex subscriptions from its local subscribers and forward simplified versions
that remote brokers understand or that are more suitable for the topology. If
it then filters incoming notifications based on the more expressive subscrip-
tions, it can increase the satisfaction level of the local subscribers.

Periodic or sporadic delivery

+ Advertisements - Producers advertise their way of publishing.

+ Subscriptions - Subscribers specify which notifications they want to re-
ceive sporadically and which they need periodically.

This captures the difference between an interest in changes of information
and the information itself. Periodically published notifications become a data
flow that represents the status of requested information at the moment of
each publication. Sporadically published notifications occur only when this
information changes. One way of looking at them is as prefiltered events that
pass when the data change exceeds a certain threshold. This is an interesting
option for reducing the amount of data sent by accepting a certain inaccuracy.

The infrastructure may either match subscriptions to corresponding pub-
lishers or try to emulate the requested delivery mode by itself. Periodic no-
tifications may be emulated by storing and repeating the latest sporadic no-
tification. Sporadic delivery can be based on a configurable threshold that
blocks the delivery of periodically published static values [MUHW04]. Note
that in a content-based system with arbitrary filters, the necessary comparison
of notifications may be restricted to an identity test or may not be possible at
all.

Notification order

+ Advertisements - Producers advertise for which of their notifications the
ordering matters.

+ Subscriptions - Subscribers specify in their subscriptions which notifica-
tions they want to receive in order.

The order in which notifications arrive may or may not be relevant. In many
cases, ordering is easy to achieve by either using centralised ordering, ordered
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transports (ATM, TCP) or by letting the producer (or its broker) impose an
explicit order and sorting the notifications on delivery.

Special care must be taken if the broker topology is allowed to change
during the delivery process or if priorities are used, as both may impact the
order in which notifications arrive and may even result in message loss. Since
ordered delivery does not imply guaranteed delivery, a very efficient solution
is to deliberately drop notifications if a successor has already been delivered.
If this is not acceptable, notifications must be reordered before delivery, which
may introduce arbitrarily long delays.

The distributed ordering of events coming from different sources is another
problem. For content-based subscriptions, it is even hard to define a meaning-
ful ordering in this case. It is therefore largely dependent on the subscription
language and the application if such an order is applicable. A generic (and
very simple) approach is the deployment of a dedicated, central broker to en-
force a global ordering, which can in turn limit the scalability of the overall
infrastructure. Note, however, that this would only impact notifications for
which ordering was requested.

Validity interval

+ Notifications, Advertisements - Producers advertise or specify a timeout
for their notifications, or a successor message that renders them irrele-
vant.

It is important for the infrastructure to know how long a notification stays
valid, either specified in terms of time or inferred by the arrival of other (follow-
up) messages. A validity based on a hop count (as used in many low-level
transport protocols) would be meaningless in the decoupled publish-subscribe
model. If only the most recent event is of interest, the validity specification
by follow-up messages is a particularly efficient approach. It allows the infras-
tructure to reorder and shorten its queues in high traffic situations.

Source redundancy

+ Subscriptions - Subscribers request redundant sources for the same event.

An example for redundant sources is a set of temperature sensors inside a
room that publish more or less the same value. They generate semantically
similar notifications which allows subscribers to double check events. In some
cases, the increased fault tolerance may be sufficient to replace at-least-once
guaranteed delivery.

Note that a request for redundancy requires the notifications or advertise-
ments of publishers to be comparable based on a subscription. Rice’s Theo-
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rem3 implies that complex subscription languages may hinder or prevent this.
In this case, explicit hints such as subjects or type identifiers are required to
assure the comparability of notifications.

Confidentiality

+ Subscriptions - Subscribers encrypt their subscriptions or send them only
to trusted brokers.

+ Notifications - Publishers connect only to trusted brokers or send partially
or completely encrypted notifications.

Confidentiality can obviously be achieved in (sub-)networks that contain only
trusted brokers [FZB+04]. Similarly, any message can be hidden from un-
trusted brokers on the delivery path by using standard encryption mechanisms
between trusted brokers. Untrusted brokers that cannot read and evaluate the
content are then forced to broadcast to all of their neighbours. Apart from
higher load at those brokers, this also introduces potentially large numbers of
duplicates in the system.

Confidentiality becomes a difficult problem if untrusted brokers must be
allowed to participate in the matching process. This is a minor problem in
subject-based publish-subscribe, where the low expressiveness of subscriptions
makes the actual content of notifications opaque to the matching process. It
can just as well be encrypted, which may be exploited within untrusted broker
networks. A reduction of content filters to channels can achieve the same
effect. In both cases, the information gain of untrusted brokers depends on
the amount of information revealed by the subject or the channel ID. The
selectivity of subjects can therefore be seen as a tradeoff between message
overhead and revealed information. Untrusted brokers can thus be prevented
from overhearing the information, but malicious brokers can still suppress
messages in this scenario.

Content-based matching requires much higher insight into the content of
notifications. A number of recent publications from the database area show
ways for matching encrypted data against certain types of queries [AKSX04,
DAK00, AKD03] without revealing any of the two. Publish-subscribe systems
could apply similar schemes to allow blind matching on untrusted brokers.
However, solving this problem for arbitrary queries and data without revealing
any information about them is likely impossible.

Authentication and Integrity

+ Subscriptions - Subscribers authenticate their subscriptions.

+ Notifications - Publishers authenticate their notifications.
3http://en.wikipedia.org/w/index.php?title=Rice%27s theorem&oldid=64121863

http://en.wikipedia.org/w/index.php?title=Rice%27s_theorem&oldid=64121863
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If publishers want to enforce access control mechanisms [BEP+03], it becomes
necessary for subscribers to authenticate their subscriptions using techniques
like digital signatures. On the other side, publishers can sign or watermark
their notifications to assure data integrity. The evaluation can then either be
done end-to-end or within the broker infrastructure.

2.2.3 Discussion

The analysis presented in this chapter provides extensive insights into the di-
versity of requirements in publish-subscribe systems with respect to the broker
implementation and the topological organisation of distributed broker net-
works. It must be noted that very few quality-of-service levels can be enforced
locally on each single broker, in which case they are mainly related to the
filtering process, to scheduling concerns or to local delivery.

On the other hand, almost all metrics are impacted by the topology of
the broker infrastructure. One of the major limiting factors is the overall
message overhead. Message multiplication in multi-hop infrastructures reduces
the bandwidth that is available for each unique message. At the same time,
it increases the per-broker load and therefore the end-to-end latency. It can
even impact delivery guarantees if brokers become overloaded and are forced
to drop messages.

Two major factors impact the global message overhead of a publish-subscribe
architecture: The expressiveness of the subscription language and, again, the
topology of the broker network. While subscription languages are an interest-
ing topic for further investigation, they are also out of scope for this thesis.
We will therefore continue with a strong focus on those QoS constraints for
which the topological infrastructure is the dominating factor.

The topology of the broker infrastructure has been a major playground
for research in recent years. Overlay networks were widely adopted as the
basic building block for publish-subscribe systems. The current state of the
art provides a system designer with a considerable body of choices amongst
the variety of different overlay implementations.

The next section overviews how overlay networks have been used to im-
plement scalable publish-subscribe systems and evaluates the QoS capabilities
they provide.

2.3 Publish-Subscribe on Overlay Networks

An important development in recent years was the introduction of overlay net-
works as building blocks for the distributed broker infrastructure of publish-
subscribe systems [PB02, TBF+04]. This allows new approaches to distributed
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filtering as well as a design simplification of distributed publish-subscribe sys-
tems.

The first attempts were targeted at replacing application-level multicast,
while later approaches aimed to support content-based publish-subscribe filter-
ing. The following sections describe different systems and mention the specific
quality-of-service properties that they provide for broker infrastructures.

2.3.1 Multicast Approaches

While many autonomous systems in the Internet have IP-level multicast en-
abled, a successful implementation across borders is still not available. It is
even unpredictable if the switch to IPv6 will bring substantial advances for the
support of native multicast at the physical layer, as its availability to customers
will continue to depend on commercial incentives, network management and
security concerns of Internet service providers. This is why many distributed
applications have long used application level multicast for their needs.

Overlay networks are expected to simplify the design of these applications
by providing generic infrastructures as building blocks. While rather limited
from a publish-subscribe point of view (low expressiveness of subscriptions),
multicast has the advantage of being easily and efficiently implemented on any
key-based routing (KBR) network (see 9.2).

4/8 Selectivity — The selectivity of subjects (or multicast groups) is rela-
tively low. This usually means that subscribers are left to do their own
filtering. On the other hand, if expensive subscription languages ren-
der matching and optimisations difficult, it may be worth considering a
combination with subjects to provide a fallback through subject matches.
This may prevent broadcasting in many cases, which can considerably
reduce the overhead of messages and filtering.

Multicast was one of the major applications proposed for various KBR net-
works. There are two different ways of implementing multicast on top of them:
overlay internal and overlay external.

Overlay external multicast

These implementations use a global overlay to index groups and then sim-
ply create a separate broadcast overlay for each multicast group. This was
exemplified by the CAN overlay [RHKS01], but is obviously possible with
any other overlay that supports broadcasting. A second example is CAM-
Chord [ZCLC05] that uses Chord for capacity adapted multicast.

The major advantage of external multicast is that each group overlay only
has to scale with the size of a group. A disadvantage is the increased overhead
of maintaining multiple independent overlays simultaneously. If the overlay is
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as resource consuming as CAN, external multicast may become very expen-
sive [CJK+03].

4 Delivery guarantees — All participants in the group overlay are known
to be interested in all messages. This diminishes the cost of deliberate
duplications which can be exploited to increase the probability of de-
livery, even under topological reorganisation. The redundancy that is
already available in a resilient overlay can directly be exploited to assure
the broadcast delivery to all live parties as long as the network stays
connected. On the other hand, most KBR broadcast schemes can effi-
ciently avoid message duplication as long as there are no reorganisations
during the delivery process.
If a subset of the group members caches the received notifications, a node
that missed notifications during a temporary failure can try to ask any
of the other members for passed notifications, possibly using a random
walk or an attenuated broadcast scheme. Similar ideas were presented
in [CFH+03].

4 Latency — The group overlay has the same size as the group. This
minimises the end-to-end hop count, which most likely becomes smaller
than in the global overlay. Obviously, this reduces the number of required
routing decisions and reduces the end-to-end latency for the given topol-
ogy. Note that the group overlays are independent of the global overlay
and may even use a different topology to optimise for their specific group
size. Overlay broadcast commonly features very good load balancing.

4 Confidentiality — This scheme effectively prevents non-subscribed bro-
kers from seeing the notifications. If some form of access control is used in
the subscription process, untrusted brokers can be prevented from join-
ing the multicast network. This enables distribution networks of trusted
brokers.

4/8 Selectivity — Apart from the matching process executed for subscrip-
tions, the distribution scheme is agnostic to the content of notifications.
This allows the deployment of arbitrary delivery algorithms and addi-
tional subscription languages within the group. Systems like Choreca
(2.3.5), that are built on top of broadcast delivery, can run on top of
the external multicast scheme to extend its capabilities to content-based
filtering. However, this requires a multi-step subscription process: a
subject-based subscription to find the multicast group and a content-
based subscription within the group. Depending on the application, this
can be an improvement if used to reduce the number of brokers that
must touch a content-based subscription. In other content-based filter-
ing scenarios that do not benefit from subjects, the doubled subscription
overhead may become a bottleneck for the overall system performance.
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Overlay internal multicast

Overlay internal multicast uses features of the respective overlay to emulate or
establish groups within the overlay itself. Since DHTs provide efficient intrin-
sics for lookup operations, the obvious approach is to have notifications and
subscriptions meet at the node that a lookup yields for the multicast address,
the rendez-vous node. Examples are Scribe [RKCD01] or Hermes [PB02] on
Pastry [RD01], Bayeux [ZZJ+01] on Tapestry [ZKJ01] and a number of pro-
posals for Chord [SMK+01], like [KR04].

These systems use two different schemes for building the multicast tree:
Scribe exemplifies reverse-path forwarding (RPF) and Bayeux uses forward-
path forwarding (FPF). Scribe’s RPF uses the reverse path from the subscriber
to the rendez-vous node to send notifications back, while FPF sends a routing
message from the rendez-vous node back to the subscriber to find a new forward
path. The latter tends to be more efficient in the beginning of the path as
overlays commonly optimise routes in this direction. However, due to the
topological organisation of the underlying DHTs, it is less efficient than RPF
at the end of the path. Both schemes are described and compared in [ZH03],
where a hybrid scheme is proposed to overcome their respective disadvantages.

All of these systems use distribution trees (commonly one per group) that
are an integral part of the overlay topology. This usually leads to a tree
depth of O(log N) where N is the number of participants in the system. The
common disadvantage of these systems is that intermediate nodes must forward
messages that they are not interested in. Above all, this regards the root node
of the respective tree. It even represents a single point of failure that must
see all notifications and subscriptions for the group to assure correctness and
completeness of delivery.

8 Latency — The global multicast network is potentially much larger than
each of its groups. This generally increases the end-to-end latency ex-
perienced in each group. Also, close to the rendez-vous node, the total
number of subscriptions of a node’s neighbours is likely to be higher than
elsewhere in the network. This further increases the load of those nodes
and therefore the overall latency.

8 Delivery guarantees — Again, due to higher load close to the rendez-vous
node, the delivery guarantees may be impacted. Message duplication is
more likely than in the external scheme, since the probability of topo-
logical reorganisation increases with the number of participants. On the
other hand, a higher number of participants provides higher redundancy
in the overall network that can be exploited to re-enhance the proba-
bility of delivery. However, achieving this is at least as hard as in the
dedicated broadcast networks of external multicast.
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4 Selectivity — Due to the use of explicitly allocated delivery paths, this
multicast scheme is easily extended with more advanced filtering tech-
niques. Hermes (2.3.2) is a good example that matches on subjects and
attribute-value pairs, thus providing different grades of content-based
filtering with little overhead.

Discussion

It is not surprising that external multicast appears to outrun the internal
scheme in terms of quality-of-service support. It simply uses a partial replica
of the global overlay, so it immediately gains the same general properties as
the internal multicast without requiring additional overhead at uninterested
nodes.

Still, the evaluation in [CJK+03] suggests that the internal scheme has the
advantage of avoiding additional maintenance overhead compared to multiple
overlays in the external scheme. It also notes that this is payed for by longer
end-to-end paths. Intermediate schemes as proposed for Scribe [RKCD01]
can reduce the path length by skipping intermediate nodes and merging their
children. Since this deviates from the original overlay topology, additional
maintenance is necessary to handle these optimisations. Consequently, this
approach can also be seen as the construction of a new overlay where the
bootstrap overhead is reduced by reusing known nodes. We can therefore
suspect the transition between the two methods to be rather smooth.

When deciding the right tradeoffs, it must also be noted that current eval-
uations only consider a single overlay topology for the global and all group
overlays in external multicast. It would be interesting to see comparisons
where the overlay topology is chosen specifically for the size, selectivity and
other quality-of-service requirements of the respective multicast group. Es-
pecially the support for arbitrary subscription languages inside of multicast
groups could turn the balance in some applications.

The Node Views approach, as presented in this thesis, makes the implemen-
tation and integration of different overlay topologies simple and thus enables
this kind of comparisons. As CAM-Chord [ZCLC05] shows, an inherent ad-
vantage of overlay external multicast is the simpler design of overlay topologies
and their implementation. Their specialised simplicity helps when introducing
new features.

2.3.2 Hermes

Hermes [PB02] was the first system to exceed the limitations of overlay multi-
cast by implementing a form of content-based publish-subscribe (named type
and attribute based filtering) on top of overlay networks. It uses the same mul-
ticast scheme as in Scribe, but installs content-based filters along the delivery



2.3. PUBLISH-SUBSCRIBE ON OVERLAY NETWORKS 27

path that filter on additional attributes of the notifications. Filter merging is
possible along the path to reduce the status overhead per node. Apart from
these features, Hermes has the same characteristics as Scribe and other overlay
internal multicast systems.

4 Selectivity — Filtering on arbitrary attributes along the multicast paths
substantially increases the selectivity of subscriptions and therefore re-
duces the number of false positives. The down side is an increased mes-
sage overhead for filter updates compared to multicast systems.

4 Confidentiality — Compared to multicast, the brokers in content-based
publish-subscribe systems require higher insight into the notifications.
Hermes uses the overlay internal multicast scheme. This means that it
can only make the tradeoff between confidentiality and message over-
head by letting untrusted brokers either broadcast completely encrypted
messages or forward them exclusively based on their subject without
revealing further content.

2.3.3 IndiQoS

IndiQoS [CAR05] reuses the design of Hermes and augments it with quality-
of-service awareness, as first presented in [AR02]. The authors distinguish
between a content profile (such as the precision of a sensor) and a QoS profile,
allowing to request periodic delivery or latency bounds. The IndiQoS descrip-
tion also refers to bandwidth as an additional metric. QoS requirements are
expressed as additional attributes of subscriptions and advertisements that are
evaluated during forwarding.

As further improvement, IndiQoS replicates the rendez-vous node and lets
the broker infrastructure select an appropriate one based on the requirements
of subscribers. This is obviously payed for by a multiplication of the message
overhead per notification.

4 Selectivity — IndiQoS inherits the selectivity properties of Hermes.

4 Latency — Subscribers can explicitly specify a maximum latency. Bro-
kers forward subscriptions according to latencies known from prior ad-
vertisements. The rendez-vous replication then enables a lower average
latency.

2.3.4 REBECA

The Rebeca system [MFB02, Reb] is somewhat of an outsider in this list
since it was initially developed as a static broker network, where joining and
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leaving was limited to the leaves of the delivery tree. It supports content-
based publish-subscribe and was intended as a proof-of-concept system for
filter merging and administration in publish-subscribe systems.

4 Bandwidth, Latency — The major disadvantages result from the static
distribution tree that currently lacks support for self-maintenance. If ap-
plicable, however, such a static environment allows a higher predictabil-
ity of available resources than a continuously changing and adapting
overlay. Where a dynamic overlay must reallocate resources when deliv-
ery paths change, a static installation does this only when new resources
are requested or old ones deallocated. If nodes are reliable and resource
allocation or rerouting is expensive, this can be an interesting alternative
to dynamic overlays.

4 Selectivity — Rebeca supports arbitrary filters as subscriptions, which
can provide a high selectivity and therefore low rate of false positives.
On the downside, highly expressive filters may prove opaque to filter
merging.

2.3.5 Choreca

Choreca [TBF+03] is an attempt to map the ideas of Rebeca on a dynamic
overlay. It routes content-based subscriptions and notifications over a Chord
broadcast tree [EAABH03] of depth O(log N). The main feature is the usage
of redundant trees, one rooted in each publisher. The overlap of these trees
allows to exploit filter similarities to reduce the filter forwarding overhead.
Compared to the multicast based systems, Choreca avoids any single point of
failure.

4 Delivery guarantees — The path redundancy in Choreca’s Chord graph
lies within O(log N). To assure the eventual delivery of a notification
in the case of a lower number of link failures, it is sufficient to reroute
it through a different neighbour than the failed next hop. This allows
Choreca to provide a very high probability for delivery.

4 Selectivity — Choreca inherits the filter characteristics of Rebeca.

2.3.6 BitZipper

The BitZipper Rendezvous [TBF+04] is a generic approach to the decentralised
evaluation of data and queries. It can be implemented over prefix-routed
overlay networks, including most key-based routing networks, like Chord or
Pastry (see 9.2). Its overhead is within O(

√
N) messages, but it is independent

of any specific feature of data or queries as opposed to the restrictions posed
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by subject-based multicast or the NP-completeness of filter merging [Müh02].
General content-based publish-subscribe filtering can be implemented with the
same message overhead when using the BitZipper.

4 Delivery guarantees — As a general-purpose solution, the BitZipper Ren-
dezvous protocol has a high resource profile. However, the implementa-
tion on top of structured overlays provides it with global load distribu-
tion and an intrinsic forwarding redundancy that is also within O(

√
N).

Exploiting this redundancy for the matching process can dramatically
increase the reliability in the face of arbitrary node failures.

4 Selectivity — The BitZipper Rendezvous is agnostic to the subscription
language. Even Turing complete subscriptions can be supported without
impacting the message overhead or the number of brokers required for
filtering.

2.3.7 Conclusion

The diverse characteristics of the presented systems leave the deployer with a
large grey area of tradeoffs. Each has its own advantages and disadvantages
in specific situations. In the case of multicast, the best possible solution is IP-
Multicast – but only if it is available in a scalable fashion. Especially a global
mapping of reasonably expressive subjects to IP addresses exposes considerable
administrative barriers and may quickly lead to address exhaustion. In this
case, overlay multicast leverages an increased overhead to provide a higher-
level approach that circumvents these problems.

Overlay internal multicast provides average O(log N) overhead and tree
depth, but the single rendez-vous node may become a problem in high-traffic
scenarios. Replication helps in balancing the load, but at the expense of even
higher overhead in common scenarios. More general approaches, like Choreca
or the BitZipper, remove the single point of failure. They combine high se-
lectivity with global load balancing at the expense of generally increasing the
overall overhead. On the other hand, the Hermes system provides similar
characteristics and problems as overlay multicast systems, but increases the
per-broker state to push the expressiveness of subscriptions towards the more
general solutions.

Obviously, different applications have different requirements. Where one
application may find a single rendezvous point acceptable as it cares more
about latency and message overhead, a second one may benefit well enough
from the high redundancy of Choreca to accept the additional overhead. De-
signing overlays that work optimally in all situations is nearly impossible and
will most likely lead to extremely complex systems that handle many special
cases. Understanding and evaluating the behaviour of such a system will be
at least as hard as their initial design.
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A more promising (and more common) approach is the development of sys-
tems that work well in well defined cases. Their characteristics can be proven
or evaluated. By relying on explicitly known quality-of-service capabilities of
these systems, applications can select the best candidate system for a specific
problem in a specific environment. Only the integration of specialised overlays,
each with its own simple design, will lead to highly configurable and adaptable
systems that keep the high predictability of their components.
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As we have seen so far, the support for different levels of quality-of-service
in large-scale overlay applications relies on an integration of different overlay
networks. This requires support in frameworks and design tools to make over-
lay implementations available in different run-time environments. Platform
independence and high-level design support are crucial for the implementation
of overlay applications that are expected to adapt to diverse requirements in
highly-scalable systems.

This chapter makes a case for new abstractions in the design of overlay soft-
ware based on the deficiencies of current approaches. Based on the examples
in the introductory chapters, the first section presents general requirements on
overlay middleware systems. Section 3.2 then reviews current frameworks and
matches them with the requirements.

Section 3.3 generalises the current approaches into two main perspectives
on overlay software: the networking perspective and the overlay protocol per-
spective. Both approaches support developers in the implementation of overlay
networks. As section 3.4 shows, however, neither of them provides an abstrac-
tion level that substantially reduces the design effort by capturing the specific
characteristics of overlay networks. This outcome motivates the development
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of higher-level abstractions, as presented in the next chapter.

3.1 Requirements on an Overlay Middleware

To provide helpful design abstractions, overlay middleware must handle, sim-
plify and pre-implement common tasks that help in maintaining overlays in
general. It can then leave the implementation of overlay specific components
to the developers. This section describes general requirements on overlay mid-
dleware systems. An overview of their incarnations in different frameworks is
provided in 3.2.

3.1.1 Generic, High-Level Models

First of all, overlay middleware must provide simplified, domain specific models
for overlay development. This allows the overlay designer to move away from
reinventing the wheel in low-level implementations and to focus on the main
features of the specific overlay. These models must support the implementation
of overlay topologies and algorithms for routing and maintenance.

An important factor is programming language independence, including the
choice of a suitable execution environment. If the designer can start with
abstract specifications of the overlay, it becomes possible to implement the
final system in different environments without major redesigns. This is vital
for distributed systems that are expected to run on different architectures, like
large servers, standard PCs and mobile devices.

Language independence is also vital for the development process. The later
the decision about the deployment environment and language can be taken,
the easier it becomes to base the decision on those performance aspects that
ultimately prove to be most relevant.

Platform independence further allows using different environments for dif-
ferent steps of the development process. Environments for rapid prototyp-
ing may look very different from those enabling high-performance execution.
High-level, language independent models and the resulting high-level design
are crucial to support this choice of environments.

The Node Views architecture presented in this thesis aims to provide such
platform-independent models. It combines them with a Model Driven Archi-
tecture for overlay implementation.

3.1.2 Software Components

To connect the high-level design with executable code, a middleware requires
a component model that enables the integration of language specific imple-
mentation parts.
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Reusable components

Most importantly, software components should be reusable in different im-
plementations to reduce the necessary amount of hand written source code.
Code reusability requires well-defined interfaces between high-level models and
specialised components. If components are written solely against the generic
models provided by the middleware, they can become part of the middleware
itself. This provides a common base of pluggable components and further
reduces the effort necessary to design new overlays.

It is obvious that this also regards the lower networking levels. Serialising
messages, sending and receiving them, is a basic feature of any networking
middleware. While a middleware may support a diversity of serialisation for-
mats (XML, XDR, IIOP, custom binary, ...) as well as different point-to-point
networking protocols (such as TCP/IP, RTP or VPNs), it should hide their
deployment behind simple interfaces to make their use a matter of selection
rather than programming.

One framework that supports this layering of components is Gridkit. It
provides a dynamic component architecture and layered networking interfaces
for overlay networks. Section 8.4 describes an implementation of the Node
Views architecture on top of Gridkit.

Reactive components

As in any networking software, the components of an overlay middleware are
naturally reactive. They respond to events such as incoming or locally gen-
erated messages, time-outs and changes to the local model. The middleware
must therefore manage these events and the coordination between different
components.

This feature is often implemented by means of Event-driven State Ma-
chines, finite automata that interconnect processing states by event triggered
transitions. Their event model is simple: messages are locally received or
produced and time-outs are triggered. The system then dispatches these
events to states according to the available transitions. Some systems, like
SEDA [WCB01] (see 3.2.1), support processing chains that forward data ob-
jects from one processing state to the next. The output of such an object
from a state becomes an additional event for the system. This approach re-
duces the complexity of each state and moves more of the control logic into
the middleware architecture.

More expressive event models can push this even further. By moving more
of the complexity into the model that underlies the middleware, components
can further reduce their implementation dependency on specific environments
and middleware implementations. EDSL (see 6.5) is an abstract EDSM language
that supports modelling the event processing of overlay implementations in a
framework independent way.
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3.1.3 Management of State and Node Data

An important part of overlay software deals with the relation of the local node
to remote nodes. Overlay middleware must obviously provide support for man-
aging this relation. This comprises handling the connections to neighbours in
the topology, adding them to the local view and removing them, but also keep-
ing fall-back candidates for the maintenance case. Nodes often have to store
further state about their neighbours, such as running time-outs, measured la-
tencies or active subscriptions. The ubiquity of state management throughout
the system calls for support in middleware. The database provided by the
Node Views architecture (see 4.3) aims to become such a central, integrative
point of state management.

A further step towards a high-level middleware is to manage nodes not
only on a connection level but to provide support for selecting neighbours and
communication partners based on various criteria. This provides an abstract
base for the respective local decisions that are currently implemented by hand,
outside of frameworks. SLOSL, as presented in chapter 5, is a domain specific
language that provides such a middleware abstraction level.

3.1.4 Integration and Resource Sharing

The last major feature of a common middleware is the integration of different
overlays. In an integrative middleware, multiple applications can run in the
same environment and each application can deploy multiple overlays. This
requires the middleware to provide ways for reducing their aggregated resource
usage. This encourages connection sharing between different topologies and
applications as well as ways to minimise the general maintenance overhead
that is generated, for example, by pings1. The Node Views approach, that
this thesis proposes in chapter 4, aims to provide an integrative data layer for
local decisions based on locally consistent views.

3.2 Frameworks and Middleware for Overlays

There have been a number of recent proposals for overlay frameworks and
middleware. Macedon, iOverlay and RaDP2P are under development and
evaluation in the corresponding projects. Other frameworks, like SEDA or
JXTA, have also been used for overlay implementations.

Figure 3.1 compares the size2 of some of these frameworks (as far as they are
publicly available). As we will see in section 3.4, the code size of a framework

1PlanetLab applications (http://planet-lab.org/), as an extreme example, were found
to generate a total of up to 1GB of ping traffic per day in 2003 [NPB03]

2Note that these numbers depend on which modules are counted as major (i.e. relevant)
parts of the frameworks.

http://planet-lab.org/
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Framework Type Size
JXTA Protocol framework 1.5 MB jar (+XML+. . . )
SEDA EDSM framework 15-30,000 lines of Java
Macedon EDSM/overlay framework 15,000 lines of C++

Figure 3.1: Approximate code size of overlay frameworks

is in no relation to the size of overlay implementations written on top of them.
It is clearly the abstraction they provide that makes the difference.

3.2.1 SEDA

The Staged Event-Driven Architecture (SEDA [WCB01]) is a framework for
scalable Internet servers. It provides an event-driven state machine (EDSM)
for request processing that is used in OceanStore [KBC+00] and (in a modified
form) in Bamboo [RGRK04]. While designed as a generic architecture, the
only available implementation is written in Java.

SEDA handles network I/O and builds an abstraction layer for message pro-
cessing in reactive state components. It does not provide any higher level over-
lay models, language independence or support for node management. State
transitions are specified by class types and dispatched in source code, which
makes state implementations hard to reuse.

3.2.2 JXTA

The JXTA project3 was started by Sun Microsystems in the year 2000. It
builds a protocol framework for peer-to-peer applications. The main focus are
unstructured broadcast networks and it provides means for connecting and
grouping nodes, discovering services and dispatching messages.

There is no support for node management or for topologies and their de-
sign. The ancestry of a broadcast model makes writing structured overlays like
HyperCUP [SSDN02] tedious work (see comparison in figure 3.4, page 40).

3.2.3 iOverlay

iOverlay [LGW04] essentially provides a message switch abstraction for the
design of the local routing algorithm. The neighbours of a node are instantiated
as local I/O queues. The overlay implementation then forwards incoming
messages between them. This approach provides an abstraction level that
simplifies the design of overlay algorithms by hiding the lower networking

3http://www.jxta.org

http://www.jxta.org
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levels. It also has the advantage of being an integrative approach that allows
resource sharing.

On the down side, the connection based model provides only basic support
for node management and no higher-level model for the implementation of
topologies. Furthermore, the router is a monolithic component in the mid-
dleware model, which leaves the concern of code reusability entirely to the
developer.

3.2.4 RaDP2P

RaDP2P [HCW04] is described as a policy framework for adapting structured
overlays to applications. User defined policy components derive node IDs from
application semantics and reassign them dynamically to nodes. Although this
is an interesting idea, there is currently neither a working implementation nor
any publicly available information describing what the policies look like or
how they are implemented. This makes it hard to estimate the support for the
before mentioned list of middleware requirements.

The idea behind RaDP2P provides an extremely high-level model that
abstracts from specific overlays. However, as it stands, RaDP2P does not
provide support for implementing the overlays themselves. It should therefore
rather be considered an application level framework.

3.2.5 Macedon

Macedon [RKB+04] constitutes the most interesting approach so far. It is
essentially a state machine compiler for overlay protocol design. Event-driven
state machines (EDSMs) have been used over decades for protocol design and
specification. Macedon extends this approach to an overlay specific language
based on C++ from which it generates source code for overlay maintenance
and routing.

The Macedon EDSM provides a high-level, domain specific model for reac-
tive overlay implementations. On the down side, Macedon’s support for node
management is as limited as in iOverlay. It does not tackle the problem of
overlay integration and, as the frameworks above, it does not provide any fur-
ther models for topology implementation. Its language dependence on C++
is certainly a further drawback. Still, the general approach could be adapted
to generate source code for different environments, e.g. for debuggers and
simulators.

3.2.6 What is missing in current frameworks?

Overlays are expected to operate autonomously. This means that they must
configure themselves and automatically adapt to a changing environment.
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However, this is not only a matter of designing a routing protocol, as the
models in current frameworks seem to suggest. Each node in an overlay needs
to take local decisions. The sum of these local decisions is the distributed
algorithm that maintains the overlay. What are these local decisions based
on?

iOverlay bases them on the currently available connections and establishes
a switch that routes messages between them. It does not provide means to se-
lect the “right” connections for specific requirements or to distinguish between
different types of connections. It does not support any node management that
could simplify these decisions.

Macedon provides an event-driven state machine abstraction. In a number
of different proof-of-concept overlay implementations, this was shown to be
very useful and efficient for implementing and testing algorithms for routing
and maintenance. However, as iOverlay, it does not support any node man-
agement for selecting connections. Topologies only arise “accidentally” from
the source code level implementation of message handling decisions. There are
no higher-level models to support the decisions that are necessary to establish
them.

This overview shows that the implementation of message protocols is the
dominating model in current frameworks. Event-driven state machines form
the state-of-the-art in the design of overlay software. They support the im-
plementation of reactive components that handle messages. They do neither
support the implementation or integration of different topologies nor the node
management that is necessary for the local decisions to become meaningful.

3.3 Current Views on Overlay Software

Overlay software has been implemented on different abstraction levels, ranging
from low-level sockets to high-level protocol models. Taking a look at the
currently available systems, we can find two basic abstractions in their design:
the low-level networking layer and the overlay routing layer. Let us now look
at each of them to see what overlay developers have to face when building
their software on top of these abstractions.

3.3.1 The Networking Perspective

At the lowest level, we find the most ubiquitous abstraction for networking
software: sockets. They provide ways to send raw blocks or streams of bytes
between application end-points on different machines. There can hardly be
an operating system that does not provide them as a programming primitive.
Their use has been largely standardised through Unix-flavoured operating sys-
tems and POSIX.1g. While they provide the most portable abstraction, their
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↑ Overlay Application ↑
↑ Overlay Implementation ↑

Message Processing Flow-Graphs, EDSMs, . . .

Message Passing Serialisation, CORBA, ONC-RPC, SOAP, . . .

Network I/O Sockets, TCP/UDP, . . .

Figure 3.2: Overlay software from the networking perspective

help for overlay development is extremely limited. Still, there are overlay sys-
tems that were implemented directly on top of sockets, like the original Chord
implementation [SMK+01].

The message passing abstraction allows software to send well-defined
data items between end-points in a physical network. A large number of dis-
tributed applications build on top of this abstraction. Consequently, there is
a remarkable set of tools, ranging from libraries for remote procedure calls
(RPC, such as Sun/ONC-RPC or SOAP) over language support for serialisa-
tion as in Java or Python, up to messaging frameworks as in CORBA or JMS.
Most of these have been ported to a large number of platforms and therefore
form an acceptable programming level that hides data issues and platform
heterogeneity. For the specific requirements of overlay network development,
they still provide a very low level.

A number of overlay networks, such as Bamboo [RGRK04], are imple-
mented on top of generic event-driven state machines for Internet servers. They
facilitate local message processing by connecting components to request
processing chains and triggering their execution. Examples are SEDA [WCB01]
or the Twisted-Framework4. While these frameworks do not offer support for
overlay specific tasks, they form a reasonable abstraction level for message-
driven networking software in general.

3.3.2 The Overlay Protocol Perspective

A more interesting abstraction level for overlay development is based on the
actual requirements that overlays have. They must route messages between
nodes, maintain their topological structure and adapt to application needs.

During the year 2004, two interesting frameworks appeared that follow this
approach, namely Macedon [RKB+04] and iOverlay [LGW04] (see 3.2). They
visibly raised the abstraction level that was available at the time and thus show
the advantage of designing frameworks specifically for overlay implementation.

As the major functionality in this abstraction level, Overlay routing pro-
tocols implement the local routing decisions for scalable end-to-end message

4http://www.twistedmatrix.com

http://www.twistedmatrix.com
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↑ Overlay Application ↑

Overlay Adaptation RaDP2P

Overlay Maintenance
Macedon

Overlay Routing iOverlay

Message Processing

Figure 3.3: Overlay software from the overlay protocol perspective

forwarding. They are distributed algorithms, executed at each member node,
with the purpose of forwarding messages at the overlay level from senders to
receivers.

Both Macedon and iOverlay take useful approaches here. iOverlay pro-
vides a simple message switch abstraction that largely reduces the program-
ming overhead when writing a router. Macedon takes a more sophisticated
approach. Its EDSM is controlled by an overlay specific language that sup-
ports the complete protocol implementation.

Apart from the forwarding feature that is obviously crucial for overlay
networks, routing protocols also have a number of implicit semantics. As a
requirement for their algorithm, they usually define the valid neighbours for
each node that assure the correctness of the routing. This leads us to Overlay
Maintenance, the perpetual process of finding these neighbours and replacing
failed ones.

Usually, maintenance and routing are tightly integrated through their in-
terdependency. The same holds for the third functionality, Overlay Adap-
tation. As we have seen in 3.2, the approach of RaDP2P is targeted rather
at applications than at overlay design. This means that there is currently no
actual framework support for the implementation of adaptable overlays, al-
though most of the existing overlay systems provide some form of adaptation.
It is usually implemented as an optimisation of the overlay topology based
on a specific metric, most commonly the hop-by-hop latency. Whenever the
choice of neighbours leaves a certain degree of freedom (which is common case
in large-scale systems), a specific adaptation algorithm is executed to find the
best candidate.

3.4 Code Complexity – why is this not enough?

Figure 3.4 compares a number of recent overlay implementations with respect
to their code size. All of these were written by hand in a general purpose
programming language. It shows that the expected code size that results from
this approach goes beyond 20,000 lines of code. It also shows that the use of
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inappropriate frameworks can result in considerably more code being written.
Especially JXTA appears to fail entirely in its goal of simplifying the design
of overlay applications.

Overlay Environment Lines of code
Framework Language by hand Macedon

Chord sockets C++ 8,000 500+
Pastry sockets Java 16,000 1300+
Bamboo SEDA Java 20,000 -
Tapestry SEDA Java 23,000 -
HyperCUP JXTA Java 30,000 -

Figure 3.4: Code size of well-known overlay implementations

As suggested in section 3.3.1, all of these implementations are very similar
in their main components, so one can expect positive synergy effects when they
are implemented on top of a common framework. This is one of the reasons why
Macedon’s implementations are considerably shorter. Note, however, that they
are not equivalent in terms of features and that the small number of comparable
overlays does not yet support any extrapolation. It would therefore be wrong
to commonly expect an order of magnitude here.

Macedon’s main advantage is the higher abstraction level as compared to
the networking layer. On the down side, however, it replaces the challenge of
writing low-level networking code by the new challenge of writing an entire
overlay implementation as an event-driven state machine. This has several
drawbacks.

While non-blocking state-machine programs are generally considered more
scalable than their major competitors, threaded programs, they are also much
harder to write and understand. State-machines require a fundamentally dif-
ferent and very specific approach to code modularisation. They split code
into processing stages based on intermediate I/O instead of semantic vicinity.
Macedon supports neither visual development nor any higher-level encapsula-
tion of semantically close code. So the gain of a factor 10 in code size is payed
for with a considerable increase in complexity and a reduced readability of this
code.

Another problem with Macedon is its tight coupling to the C++ language.
Porting a Macedon implemented overlay to a new programming language ba-
sically involves reimplementing both the overlay and Macedon itself.

A more general problem is the event model of current event-driven state
machines. It is commonly based on messages as monolithic blocks of data
that event handlers must handle in their entirety. There is no support for
more fine-grained subscriptions that could allow more generic, reusable event
handlers.
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It should also be stressed that support for overlay software functionality is
not currently complete. Writing overlay software in an adaptable way must
still be done by hand. Even Macedon does not provide any help here, despite
the fact that adaptation is a very important feature for overlay applications,
especially if they need to be quality-of-service aware.

As we have already seen, the overlay protocol approach enforces the plain
source code implementation of a number of implicit semantics that largely
impact the entire overlay. This regards routing protocols, maintenance algo-
rithms and adaptation. It therefore becomes hard to understand this kind of
overlay software without further documentation – external to the implemen-
tation.

This is especially true for the topology, the most important characteristic
of the overlay. It is not explicitly described in any single software component,
but scattered throughout the implementation. EDSM implementations are
the extreme variant, as they structure their code entirely based on overlay
specific I/O. This makes it hard to reuse parts of the overlay software for
different overlays. It also hinders the integration of different overlays and
their combined usage in a single application. This currently makes overlay
implementations a rather monolithic piece of software.
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The Model Driven Architecture [MM03] is a software design approach pro-
posed by the Object Management Group (OMG1). It aims at enforcing the
power of abstract models over platform specific implementations. MDA ap-
plications are designed in platform independent models (PIM) that are then
transformed into platform specific models (PSM) and finally augmented with
platform specific code to provide a complete implementation of a system. It
is therefore a much more high-level and comprehensive technique than a mid-
dleware design approach. The OMG’s MDA is based on the Unified Modelling
Language (UML [Obj01, Fow04]) and thus largely targeted at business logic
and enterprise-level software design.

This chapter will derive and present models that enable a Model Driven
Architecture approach in software design for overlay networks. The next sec-
tion tries to straighten the perspective on overlay software by introducing the
topology itself as a design target. This leads to a novel approach, named Node
Views, that is presented in section 4.3. Its major advantages are the decou-

1http://www.omg.org/

http://www.omg.org/
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pling of generic maintenance components and the inherent support for explicit
topology specifications as the central part of the implementation.

4.1 The Topology Perspective

↑ Overlay Applications ↑

Topology Selection
Node
Views

Overlay Message- Topology Adaptation
handling/routing Topology Maintenance

Message Processing Topology Rules

Figure 4.1: Overlay software from the topology perspective

While current frameworks focus on message forwarding and the protocol
design part of overlay software, it should have become clear that these ab-
stractions stay at a relatively low level. Even the EDSM approach forces the
developer to design code in a very specific way that is tightly coupled to a
framework and leaves source code too monolithic for reuse. We will now raise
the perspective to the design of topologies that establish the global character-
istics of overlay networks. From this perspective, we can establish five major
functional levels in overlay software, as shown in figure 4.1.

4.1.1 Topology Rules

Local topology rules play the most important role in overlay software which
makes them a very interesting abstraction level. The global topology of an
overlay is established by a distributed algorithm that each member node exe-
cutes. The topology rules on each node form the part that actually implements
this algorithm by accepting neighbour candidates or objecting to them.

There are two sides to topology rules. Node selection allows an applica-
tion to show interest in certain nodes and ignore others based on their status,
attributes and capabilities. Generally, applications are only interested in nodes
that they know (or assume) to be alive, usually based on the information when
the last message from them arrived. But not even all locally known live nodes
are interesting to the application that can select nodes for communication
based on quality-of-service requirements. Furthermore, if a heterogeneous ap-
plication uses multiple overlays, its participants do not necessarily support all
running protocols. Each node must see the others only in overlays that they
support.



4.1. THE TOPOLOGY PERSPECTIVE 45

Node categorisation is the second task. Where selection is the black-
and-white decision of seeing a node or not, categorisation determines how
nodes are seen. Nearly all overlay networks know different kinds of neighbours:
close and far ones, fast and slow ones, parents and children, super-nodes and
peers, or nodes that store data of type A and nodes that store data of type
B. Node categorisation lets a node sort other nodes into different buckets to
distinguish different types of equivalent nodes. Common overlay tasks are then
implemented on top of the node categorisation.

It is a hard problem but also an interesting question to what extent the
process of inferring the global guarantees provided by a topology from the local
rules can be automated. In current structured overlay networks, topology rules
are stated apart from the implementation as a local invariant whose global
properties are either proven by hand or found in experiments. The Node
Views architecture proposed in this thesis is the first to move these rules into
machine readable overlay models. This makes them available for automated
model transformation and analysis.

4.1.2 Topology Maintenance

Topology maintenance is the perpetual process of repairing the topology when-
ever it breaks the rules. Above all, this means integrating new nodes (i.e.
selecting and categorising them) and replacing failed ones. The detection of
a situation that “breaks the rules” is obviously an event that must be ex-
tracted from the topology rules. Support for this functionality is very limited
amongst current overlay frameworks, despite its obvious importance for the
required self-maintenance in these systems.

4.1.3 Topological Routing

Routing captures the local decision to which of the neighbours a message
should be forwarded. The goal is to deliver it to the final destination or to
bring it at least one step closer. The routing algorithm exploits the topology
rules to determine the best next recipient. The complete process of taking a
forwarding decision is typically executed in multiple inter-dependent steps. A
part of this is the decision if the local node is the destination of an incoming
message. The message is then either locally delivered to a message receiver
component or further treated to determine the responsible neighbour.

4.1.4 Topology Adaptation

Topology adaptation is the ability of a given overlay topology to adapt to
specific requirements. As opposed to the error correction done by topology
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maintenance, adaptation handles the freedom of choice allowed by the topology
rules. The rules therefore draw the line between maintenance and adaptation.

An example is Pastry where evaluations have shown that redundant entries
in the routing table can be exploited for adaptation to achieve better resilience
and lower latency [ZHD03]. Topology adaptation usually defines some kind of
metric for choosing new edges out of a valid set of candidates. Building the
“right” sub-groups of nodes in hierarchical topologies (or embedded groups as
in [KR04]) also fits into this scheme.

Most current overlays are designed with some kind of adaptation in mind,
whereas the available frameworks do not provide support for its implementa-
tion. What is needed here is a ranking mechanism for connection candidates.
Overlays usually aim to provide an “efficient” topology. The term efficiency,
however, is always based on a specific choice of relevant metrics, such as end-
to-end hop-count or edge latency, but possibly also the node degree or some
expected quality of query results. The respective metric determines the node
ranking which in turn parametrises the global properties of the topology.

4.1.5 Topology Selection

Topology selection is the choice of different topologies that an overlay appli-
cation can build on. Supporting multiple topologies obviously makes sense for
debugging and testing at design-time. However, it is just as useful at run-time
if an application has to adapt to diverse quality-of-service requirements, such
as different preferences regarding reliability, throughput and latency. A given
topology may excel in one or the other and this specialisation allows it to
provide high performance while keeping a simple design. Topology selection
allows an application to provide optimised solutions for different cases.

4.1.6 Discussion

While overlay networking stays an important part of the implementation, the
topology perspective allows developers to take a broader and more abstract
view on the design. It focuses on the major characteristic of overlay networks:
their topology. This provides a cleaner view on the intentions of overlay im-
plementations.

Topology adaptation and selection play the most important role for QoS
support in overlays. However, selection obviously relies on the integration of
different overlay implementations to make their topologies available to a single
application. This is especially necessary to avoid duplication in effort when
maintaining multiple topologies and switching between them. It is not efficient
to have an application maintain several overlays if each of them independently
sends pings to determine the availability of nodes. An integrative approach is
needed to avoid this kind of overhead.
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The following section motivates the background for Node Views, an inte-
grative, high-level approach to overlay software design, that is based on the
topology perspective.

4.2 Background: The Local View of a Node

In scalable, distributed overlays, the global topology and all properties of the
overlay result from the sum of local actions of its participants. All actions must
be based on local decisions that each single node takes depending on its local
view. The local view is a node’s combined knowledge about the other nodes
in the system, above all (but not limited to) its neighbours in the topology.

4.2.1 The Chord Example

We take Chord [SMK+01] as an example, a structured overlay network based
on a ring topology (see 9.2). The top node of the ring in figure 4.2 sees the
nodes within the shaded area.

The local view of this node is 1) the successor link, i.e. the direct clockwise
neighbour, plus 2) the finger table, a list of nodes further away along the ring
that are chosen according to an overlay specific rule. For better resilience,
Chord actually keeps a list of successors.

1

3

2
=⇒ successor Node 1

finger table Node 2
Node 3

:

Figure 4.2: The Chord example - from global to local view

Two other structured overlays, Pastry [RD01] and Tapestry [ZKJ01], as-
semble their local view in a similar fashion. They keep a list of direct neigh-
bours and a routing table with members that are further away. The rule for
choosing these nodes is similar in both systems, but differs from the rule used
in Chord.

Unstructured networks also keep a set of neighbours that are chosen based
on attributes known about them. These may include network latency, uptime,
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node degree, available resources, data references or categories about content
stored on them. Super-Peer networks [YG03] form a variant that keeps two
distinct sets of peers and super-peers.

In all of these overlay networks, each participant sees a number of other
members through specific data structures that represent these neighbour lists,
successor lists, routing tables, leafsets, multicast groups, etc.

Abstracting from specific implementations, we can now see that each of
these data structures provides a node with a partial view on the network.
What we previously called the local view of a node is therefore the union of
all its partial views on remote nodes.

4.2.2 Data about Nodes

To establish a local view, each node has to keep data about other nodes. Ex-
amples are addresses and identifiers, measured or estimated latencies and ref-
erences to data stored on these nodes. Furthermore, it is generally of interest
when a node was last contacted (time-stamps or history), if a node is consid-
ered alive or if a ping was recently issued to check if it still is. The information
that this was necessary may be very valuable to, say, a routing component
that can take the decision to temporarily route around that questionable node
in order to keep the hop-by-hop loss rate low. Locally available data about
remote nodes is crucial to all components of the overlay software.

Data about remote nodes is gathered from diverse sources. Some data can
be determined locally (IP address, ping latency, . . . ), while other information
is received in dedicated messages - either directly from the node it describes
or indirectly via hearsay of intermediate nodes. There often is more than one
way of finding equivalent data. Section 7.2 describes the example of latencies
being measured (ping) or estimated. As another example, a node A knows
that a node B is alive if A recently succeeded in pinging B, if A received a
message from B, if other nodes told A about B (gossip), etc. Note that both
overhead and certainty decrease in this order. Different quality-of-service levels
in an overlay application can trade load against certainty by selecting different
sources.

Topology rules, maintenance, adaptation and selection mainly deal with
managing data about nodes. The topology rules put constraints on the data
about possible neighbour nodes. Maintenance needs to keep data about fall-
back candidates that may currently not be neighbours. It also deals with
gathering data about nodes that joined or finding inconsistencies between lo-
cal and remote views. Adaptation does a ranking between candidate nodes
before it decides about the instantiation as neighbours or fall-backs. Topology
selection then switches between different views, i.e., ranking metrics and sets
of neighbours.

A data abstraction is obviously a good way of dealing with this diversity of
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sources, data characteristics and data management tasks. It allows an overlay
to lift dependencies on specific algorithms and to take advantage of the different
characteristics of different implementations as the need arises. The Node Views
approach provides such an abstraction.

4.3 The System Model: Node Views

The Node Views approach instantiates the local view of a node as a local
database that keeps all locally known data about remote nodes. This allows
to apply common approaches from active database management systems in
order to model and implement the data management part that is necessary to
maintain and adapt topologies.

The rest of the architecture, that is shown in figure 4.3, results from fol-
lowing the well-known Model-View-Controller pattern [BMR+96]. It aims to
decouple software components by separating the roles for state and data stor-
age (model), data presentation (views) and data manipulation (controllers,
named harvesters in the Node Views context).
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Figure 4.3: The overall system architecture of Node Views

4.3.1 Nodes

A node is the local representation of a remote member of the topology and
the “atomic unit” for overlay networks. It has a number of attributes locally
assigned to it. Nodes and their attributes become available to the local view
through physical links, messages or via hearsay of other members. There are
physical and logical attributes.
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Logical attributes include the node identifier used in structured networks.
Similarly, related or precomputed data like distances between identifiers can be
stored in attributes. Besides that, an application may add semantic informa-
tion about data stored on that node or references to content filters associated
with it.

The most important physical attribute is the network address of the node,
but others, like measured or estimated latency and throughput, may also be of
interest. Note that this model abstracts from the source of such attributes and
thus unifies estimates and measurements. This allows to exploit both in view
definitions and to make them exchangeable as needed, without any impact on
the implementation of components that use this information.

When using multiple (logical and physical) identifiers at runtime, they can
potentially become inconsistent. This may happen if two different nodes have
taken the same logical identifier by accident or if a node failed and a new one
took over its physical address with a different logical identifier. These prob-
lems have a number of possible solutions, which are normally implemented
as part of the overlay protocol. The Chord overlay, for example, tests for
duplicated logical identifiers in its join procedure and repeats the join until
an unused identifier was found. In general, the right solution is very overlay
specific. Therefore, this kind of inconsistency cannot be prevented or resolved
automatically by an overlay-agnostic middleware layer and sometimes not even
locally between neighbours. The runtime system should therefore simply trig-
ger a database event if any inconsistency is detected and otherwise leave the
resolution to the overlay implementation.

Further physical attributes regard the communication status of a node. As
described before, it is generally of interest if a node is currently considered
alive and when it was last contacted (time-stamps or history). A component
that pings nodes if they do not respond to messages within a certain time
interval can set a boolean node attribute when starting this action. A routing
component can then take the decision to temporarily route around that ques-
tionable node in order to proactively keep the hop-by-hop loss rate low. Note
that this kind of information is independent of any specific overlay and can
therefore be shared between different running overlays to minimise the amount
of outgoing pings.

4.3.2 Node Database

The active node database represents the complete local view of a node. It
stores the attributes of all locally known nodes which makes it a locally con-
sistent storage point. All components in the system can easily contribute and
benefit from it. Note that the database is independent of specific topologies
and overlay implementations and that it abstracts from the way how nodes
and their attributes are found.
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Figure 4.4: View components in the Node Views architecture

When an overlay application terminates and is restarted, it has to reconnect
to the overlay. If the local node database is made persistent, it can directly
be used to find good candidates for joining. A (partially) persistent node
database provides better support for this than a simple, semantic-free list of
network addresses as currently used in most overlay implementations.

The high value of a consistent local view for making local decisions makes
nodes and the node database central components of an overlay middleware.
They store information that is relevant to all other components and act as a
knowledge base for the local decisions of the overlay implementation and the
running applications.

4.3.3 Node Set Views

Node set views represent the views that are specific to a topology2. They are
active views of the node database and form the most important abstraction
for overlay implementations. They can also be seen as filters for the database.
The software components that use a view are restricted to see only a relevant
subset of nodes and their attributes.

We can extract node set views from current overlays in many ways. Un-
structured overlays usually do not characterise their neighbours and keep only
a single set of nodes based on a pre-defined ranking. In a similar way, Super-
Peer networks [YG03] use two distinct sets of peer nodes and super-peer nodes.

Most structured overlays are based on two or more distinguished node sets.
As shown for the Chord example in 4.2.1, the topologies of Pastry [RD01] and
Tapestry [ZKJ01] also use two node sets: leafset and routing table. Structured

2Note that a single topology can have multiple views, such as the leaf-set and routing
table found in Pastry [RD01], or different hierarchical levels as in super-node networks.
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overlays based on de-Bruijn graphs (9.2.5) have only one node set. It contains
the direct neighbours in the graph.

4.3.4 View Definitions

The subset of nodes that are available through a view is determined by a view
definition. As generally known from database views, this is a function that
constrains the node data taken from the database or recursively from other
views. The interaction between database, views and their definition is illus-
trated in figure 4.4. The view definition language SLOSL, that was developed
for this architecture, is presented in chapter 5.

4.3.5 View Events

As in any networked system, overlay components are naturally reactive and
respond to changes in the local view. View events represent these changes. A
notification about them is fired whenever nodes enter or leave a view, or when
visible node attributes change. The node database can support this with a
technique that is long known in the active database area, Event-Condition-
Action rules [DBM88, Pat99]. They trigger reactive components of the soft-
ware when data changes occur. Views generate and filter notifications and soft-
ware components receive only those from the views they see. Event-triggered
components are a common idea in software design, where it is best known as
the observer pattern [BMR+96]. It is also related to publish-subscribe systems
(see 2.1). The view events supported by the SLOSL view definition language
are described in section 5.5.

4.3.6 Harvesters and Controllers

Harvesters are a major part of the overlay maintenance implementation. They
aim to update the database according to the view definitions. This includes
updating single attributes of nodes as well as searching new nodes that match
the current view definitions. Note that harvesters do not aim to provide a
global view. They continuously update and repair the restricted and possibly
globally inconsistent local view. The node database effectively decouples them
from other parts of the overlay software which enables their implementations
as generic components in frameworks. Harvesters are further discussed in
chapter 7.

From an implementation point of view, harvesters are mainly a design
concept. MVC terminology uses the term controller (as in figure 4.4), which is
any component that modifies the system state. A harvester in the Node Views
architecture is a special controller or a complex composition of controllers
that targets a specific functionality in an overlay network. The term harvester
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will be used wherever complex actions such as replacing nodes on failure or
repairing views is involved.

4.3.7 Routers and Application Message Handlers

Other overlay components like message handlers or routers depend on node
set views. They need node data for their decisions when accepting, routing, or
otherwise handling messages. Structured overlays base this decision mainly on
the ID assigned to a node. However, there is a substantial amount of research
dealing with better decisions for more efficient overlays. These decisions are
based on latency measurements and estimates, path redundancy, node histo-
ries, node capabilities, etc.

Database and views support these decisions by providing locally consistent
views on the nodes and pluggable, generic harvesters that maintain them.
They decouple message handlers from maintenance components and reduce
their implementation to very specialised components that become pluggable
themselves.

4.3.8 Discussion

The architecture uses the Model-View-Controller pattern (database – node set
views – harvesters) to split the previously monolithic implementations of over-
lay software. The resulting System Model simplifies and decouples large parts
of the overlay implementation. Since data is stored in a single place, software
components no longer have to care about any data management themselves.
They benefit from a locally consistent data store and from notifications about
changes.

As known from database views for server applications, node set views pro-
vide simplified, decoupled layers and a common interface for overlay software
components. This makes components reusable and allows their generic imple-
mentation to become part of frameworks. Even if a specialised component has
to be written from scratch, it benefits from consistent, active node set views
and the data-driven decoupling from other components.

The most important feature of this abstraction, however, is the inherent
support for topology rules and adaptation. The view definition becomes the
central point of control for the characteristics of the overlay implementation.
The language that we use for this purpose is described in the following chapter.
Its high expressiveness for ranking, selecting and categorising nodes allows for
a broad range of overlay design decisions while at the same time separating
and hiding them from the implementation of overlay components.
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This chapter presents SLOSL, the SQL-Like Overlay Specification Language.
It was specifically designed for topology view definitions and extends the SQL
database query language to support the special semantics of topology rules and
topology adaptation. The additional semantics also form the basis of overlay
routing, as section 5.4 explains. The clear design goals of SLOSL were a high
abstraction level and short, data-driven expressions.

Section 5.1 exemplifies how the different clauses of SLOSL interact for creat-
ing views and selecting nodes, based on the Node Views architecture described
in the previous chapter. The subsequent section 5.2 describes the grammar
in detail. Section 5.3 provides some more examples for SLOSL statements that
implement different topologies. The next section (5.4) then outlines how SLOSL

views are used to automate routing decisions. The final section 5.5 explains
the different event types that the active SLOSL views provide, and that the
Node Views architecture exploits to trigger controllers.
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5.1 SLOSL Step-by-Step

This section describes the different clauses of SLOSL by evaluating an exam-
ple step-by-step. It aims at providing a clear idea of the general execution
semantics of SLOSL statements.

It is important to note beforehand that this scheme is only one way of
evaluating these statements. As a declarative language, SLOSL does not pro-
vide any guarantees about the order or time of evaluation of its clauses or
expressions in execution environments. See section 8.3 for an introduction to
possible implementations and optimisations.

Here, our running example is a SLOSL specification of the Chord graph as
presented in the original publication [SMK+01]. See 4.2.1 for a brief descrip-
tion of the Chord topology or 9.2 for the general concepts behind this kind of
overlay.

1 CREATE VIEW c h o r d f i n g e r t a b l e
2 AS SELECT node . i d
3 FROM node db
4 WITH l o g k = log (K )
5 WHERE node . suppor t s chord = true AND node . a l i v e = true
6 HAVING r i n g d i s t ( l o c a l . id , node . i d ) in [2i, 2i+1)
7 FOREACH i IN [ 0 , l o g k )
8 RANKED highest (1 , r i n g d i s t ( l o c a l . id , node . i d ) )

As known from SQL, the first code lines do the following:

1. Define a node set view to be known under the name chord fingertable.

2. The interface of this view presents the id attribute of its nodes to the
components that use it. No other attributes are presented, although
others may be used in the view specification itself.

3. This line states the super-views of the newly created one. In this case,
it is a direct sub-view of the local node database.

The next thing to note is the WITH clause in line 4. It defines variables or
options of this view. They can be set at instantiation time and changed at run-
time. In the example, the variable log k is given a default value, the logarithm
of the size of the key space. It is used by Chord to determine the length of
node identifiers. For the Chord topology, this is a global constant that must
be fixed at deployment time.

The following figure presents the local view on the topology that we are
constructing in this view. It results from the partial evaluation of the SLOSL

clauses up to this point.
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As can be seen in the bottom-left corner of the graph, there is currently only
one node missing in the local database. This may mean that the local node
has not yet heard of it or has already removed it from the database due to
space constraints. In large overlay networks, the database will usually only
contain a small subset of all nodes, most notably those that are visible in the
locally active views. Previously known nodes that have gone out of sight may
be removed based on an implementation specific garbage collection or caching
policy (see 7.3).
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The next step is to evaluate the WHERE clause. It constrains nodes that
are considered valid candidates for this view (node selection). Here we exploit
an attribute named supports chord that is true for all nodes that know about
the Chord protocol. The second attribute, alive, is true for nodes that the
responsible harvesters deemed alive. As the figure shows, there are two nodes
that are rejected by the boolean expression because the local node assumes
them to be dead.
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We can now evaluate the FOREACH clause. Its purpose is to describe a set of
buckets, the node categories or node equivalence classes. They are enumerated
by the values of the run variable i in the example. If more than one FOREACH
clause is given, each combination of values references one of the buckets.
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HAVING ring dist(local.id, node.id) in [2i, 2i+1)

Having determined the available buckets, we can start evaluating the HAVING
expression for each node and each bucket. If it evaluates to true, we store the
node in the bucket. In the example, the HAVING clause states that the result
of the Chord distance function must lie within the given half-open interval
(excluding the highest value) that depends on the bucket variable i. Here, the
name ring dist refers to a user-provided function. However, the distance is
locally a constant which could just as well be stored in a node attribute.
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RANKED highest(1, ring dist(local.id, node.id))

Finally, the nodes are chosen from each bucket by the ranking function highest
as the 1 top node(s) that provide the highest value for the term ring dist(local.id,
node.id). The ranking function allows us to do topology adaptation. It selects
nodes from each category that match specific criteria best.

5.2 Grammar

This section describes the different clauses of SLOSL in more detail. It defines
the grammar in a simple, EBNF-like fashion. A few conventions are used:

• somename-commalist denotes a comma-separated list of somename ele-
ments.

• expression denotes more or less arbitrary arithmetic expressions, while
bool-expression refers to an expression that returns a boolean value (true
or false), based on comparisons and the common operators AND, OR,
NOT.

• somename-identifier denotes an identifier and gives it the name some-
name. This name is not used in the grammar but indicates its meaning.
In any case, identifiers are lower-case alpha-numeric names (including
underscores) that start with a letter.

As can be seen from the example, the complete statement of a SLOSL defi-
nition consists of seven parts:

statement ::= create attr-select parent-select [options] \
[where] [bucket-select] [ranking] ’;’

Comments up to the end of the line are allowed everywhere (outside tokens)
and begin with a double hyphen (– –).
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5.2.1 CREATE VIEW

create ::= ’CREATE VIEW’ view-identifier [ ’AS’ ]

This clause creates and identifies a view.

5.2.2 SELECT

attr-select ::= ’SELECT’ attribute-def-commalist
attribute-def ::= attribute-identifier ’=’ expression
attribute-def ::= ’node.’ attribute-identifier

This clause defines the interface of nodes in this view. Only the attributes
listed here can be seen by software components that use the view. However,
all attributes found in the parent views can be used for the view definition.
The expression in the last line is a common short form for attrib = node.attrib,
where the new attribute name is identical with the original one.

It is quite a capable feature that attributes can be assigned their value by
arbitrary expressions that may or may not depend on the attributes with the
same name in the parent views. This can be used for renaming attributes,
e.g. to trick a black-box component into using other attributes, to convert
between different attribute representations (time, value ranges, . . . ) or to pre-
pare data for transmission in message protocols. If no assignment is supplied,
the attribute is presented unchanged as found in the parent views.

5.2.3 FROM

parent-select ::= ’FROM’ parent-identifier-commalist

Each view takes its nodes from its parent view(s). The set of candidate
nodes is the union of all nodes in its parents. All parent views must provide at
least those attributes for their nodes that are referenced in the SLOSL statement.

5.2.4 WITH

options ::= ’WITH’ option-assignment-commalist
option-assignment ::= option-identifier [ ’=’ expression ]

The WITH clause names configurable options of the defined view. They
can be referenced in the clauses SELECT, RANKED, WHERE and HAVING–
FOREACH. Options can be assigned a default value in the definition, set at
view instantiation time and changed at run-time.

Special care must be taken if they are used in the FOREACH list (as
shown in the Chord example). Changing their value at run-time can mutate
the structure of the view buckets. This may break components connected to
the view if they expect a static bucket structure.
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5.2.5 WHERE

where ::= ’WHERE’ bool-expression

The boolean expression puts constraints on the attributes of nodes that are
considered candidates for this view. This clause implements the node selection
part of the topology rules.

5.2.6 HAVING . . . FOREACH

bucket-select ::= ’FOREACH’ ’BUCKET’
bucket-select ::= [ ’HAVING’ bool-expression ] ( bucket-def )+
bucket-def ::= ’FOREACH’ bucket-variable-identifier \

’IN’ (range | constants-commalist | \
sequence-identifier)

range ::= integer ’:’ integer

This clause aggregates nodes into buckets. It implements the node cate-
gorisation of the topology rules. In its simplest incarnation, the FOREACH
BUCKET clause copies the buckets from the parent views. View definitions
can thus ignore the bucket structure of parents and still provide it as their
own interface. This allows template-like view definitions that change only the
interface of nodes (SELECT) or that select a subset of nodes (WHERE) from
the buckets. In the absence of any FOREACH clause, the view will only have
a single flat bucket containing all visible nodes.

In the second and more common form, the HAVING–FOREACH clause
defines either a single bucket of nodes, or a list, matrix, cube, etc. of buckets.
The structure is imposed by the occurrence of zero or more FOREACH–IN
clauses, where each clause adds a dimension. Nodes are then selected into
these buckets by the optional HAVING expression (which defaults to true).

A node can appear in multiple buckets of the same view if the HAVING
expression allows it. If bucket variables are used in the view attribute definition
(SELECT), the same node can carry different attributes in different buckets
of the created view (see the Pastry example in 5.3).

The bucket abstraction is enough to implement graphs like Chord, Pastry,
Kademlia or de-Bruijn and should be just as useful for a large number of other
cases. It is not limited to numbers and ranges, buckets can be defined on
any sequence of values. Numbers are commonly used in structured overlays
(which are based on numeric identifiers), while strings can for example be
used for topic-clustering in unstructured networks. Since SLOSL is working on
a database, the values in the FOREACH list can naturally be taken from a
database table. However, the warning about variable usage (WITH) applies
in this case, too.
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5.2.7 RANKED

ranking ::= ’RANKED’ function ’(’ expression-commalist ’)’
function ::= ’lowest’ | ’highest’ | ’closest’ | ’furthest’

This clause describes a filter (the ranking function) that selects a list of
nodes from a list of candidate nodes. As motivated in chapter 3, ranking nodes
is a major task in overlay adaptation. SLOSL moves it from the implementation
into the view definition and makes it configurable and adaptable through view
options and bucket variables.

An important feature of this approach is that an application can use mul-
tiple specifications and/or rankings to instantiate on-demand the views that
currently fit best. In the Chord example, nodes are ranked by highest ID, but
one could also use the lowest latency, highest uptime, age of last contact, or
some reliability or reputation measure. It is obvious that switching between
different ranking mechanisms (RANKED) or node selections (WHERE) does
not have any impact on the implementation of routers, harvesters or similarly
connected overlay software components, as long as the bucket structure of the
view (FOREACH) stays unchanged. It does, however, have a major impact
on the global topology and its performance characteristics.

One interesting property of the Chord example is that the ranking function
is independent of the bucket where it is evaluated. It only depends on the
attributes of the node itself and can be calculated in advance. While this is
not the case in all topologies, it is an obvious optimisation where available.
See section 8.3.2 for a discussion of possible optimisations.

5.3 More Examples

This section briefly presents a number of topology implementations in SLOSL.
The diversity of the examples motivates the broad applicability of SLOSL to
the design of various different types of overlays.

5.3.1 De-Bruijn Graphs

De-Bruijn graphs [dB46] combine a 1-dimensional view with some calculations
that yield at most one node per bucket. Note that due to the structure of
these graphs, a functional overlay implementation will need more than one
view here to compensate for empty buckets if the ID space is not completely
filled up with nodes. Such approaches are described in [LKRG03, DMS04].

1 CREATE VIEW de b ru i j n
2 AS SELECT node . i d
3 FROM node db
4 WITH max id=264 , max d i g i t s=8
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5 WHERE node . a l i v e = true
6 HAVING node . i d = ( l o c a l . i d ∗ max d i g i t s ) % max id + d i g i t
7 FOREACH d i g i t IN ( 0 : max d i g i t s )

5.3.2 Pastry

Pastry [RD01] uses a 2-dimensional view and two user-provided functions:
digit at pos for the digit at a given prefix position in the ID and prefix len, the
length of the longest common prefix of two IDs. As in the Chord example, the
ring distance is a simple function that is left out for readability reasons.

1 CREATE VIEW pa s t r y r ou t i n g t ab l e
2 AS SELECT node . hex id , node . i d
3 FROM node db
4 WITH max d i g i t =16, max pre f i x=40
5 WHERE node . a l i v e = true
6 HAVING d i g i t a t p o s ( node . hex id , p r e f i x ) = d i g i t
7 AND p r e f i x l e n ( l o c a l . hex id , node . hex i d ) = p r e f i x
8 FOREACH d i g i t IN ( 0 : max d i g i t )
9 FOREACH p r e f i x IN ( 0 : max pre f i x )

10 RANKED highest (1 , r i n g d i s t ( l o c a l . id , node . i d ) )

Pastry uses a second view for what it calls a leaf-set. It contains the direct
neighbours in the ring, both on the left and the right side of the local node.
There are different ways of specifying the leaf-set in SLOSL, one being the use
of two views for left and right neighbours. Here, we present a second (and a
little more complex) possibility that uses two buckets for this purpose. Note
also the use of a new node attribute side to memorise where the neighbour
was found. The ncount option makes the number of neighbours configurable
at run-time.

1 CREATE VIEW c i r c l e n e i g hb ou r s
2 AS SELECT node . id , s i d e=s i gn
3 FROM node db
4 WITH ncount=10, max id=2160 − 1
5 WHERE node . a l i v e = true
6 HAVING abs ( node . i d − l o c a l . i d ) <= max id / 2
7 AND s i gn ∗( node . i d − l o c a l . i d ) < 0
8 OR abs ( node . i d − l o c a l . i d ) > max id / 2
9 AND s i gn ∗( node . i d − l o c a l . i d ) > 0

10 FOREACH s i gn IN (−1 ,1)
11 RANKED lowest ( ncount , r i n g d i s t ( l o c a l . id , node . i d ) )
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5.3.3 Scribe on Chord

Scribe [RKCD01], as presented in section 2.3.1, is a multicast scheme that was
initially implemented for the Pastry overlay. It is, however, generally appli-
cable to key-based routing overlays (see 9.2), which allows its implementation
also on top of Chord. Scribe essentially exploits the key mapping provided by
the overlay network to determine a rendezvous node for each multicast group.
It then sends group messages towards the rendezvous, which serves as the root
of a multicast tree. Subscriptions build up forwarding state along the way and
publications follow them backwards. Subscriptions and publications simply
follow the Chord routing policy towards the rendezvous node. Once a match
was found however, the publications must be forwarded according to rules that
are specific to Scribe.

SLOSL models subscription state as a set of group identifiers that it keeps
for each neighbour. It then builds up one view for each group topology that
the local node participates in. The view selects only those Chord fingers that
are subscribed for messages of this group. Publications are simply broadcasted
to all nodes in the view to forward them along the multicast tree.

1 CREATE VIEW s c r i b e s u b s c r i b e d f i n g e r s
2 AS SELECT node . i d
3 FROM c h o r d f i n g e r t a b l e
4 WITH group
5 WHERE group in node . s u b s c r i b ed g roup s

5.4 SLOSL Routing

The SLOSL view definitions allow for a simple extension towards a complete
routing strategy. As the Pastry specification in 5.3 exemplifies, most overlay
systems base their routing decisions on more than one view. They commonly
use different views for semantically close and far neighbours, such as a neigh-
bour table and a routing table.

When a router looks for the next hop for a given destination, all it has to do
is test the relevant views in a sensible order to see if such a node exists. This
process exploits both the node categorisation and ranking features of SLOSL as
follows.

1. The SLOSL clauses HAVING–FOREACH are evaluated against the (par-
tially) known attributes of the destination node to find the corresponding
bucket. If that fails, the complete process fails for this view.

2. If at least one bucket is found, its RANKED clause is executed to deter-
mine the best target.
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Note that the WHERE clause is not required to be evaluated. In fact,
there may not even be enough local information about the destination node to
do node selection. The node may only be known from the destination field of
the currently forwarded message and thus may not appear in the view or even
in the database. To find the next hop that corresponds to the destination,
however, it is sufficient to find the category that it would normally be in. The
category determines the local bucket of equivalent nodes.

Furthermore, there is nothing that prevents the router from first querying
the database for a node that matches the destination exactly. If it is found, its
physical address can be used to send the message directly. This can be used to
reduce the latency towards certain nodes that the local node is not normally
connected to in the overlay topology.

So far, we only regarded unicast, i.e. forwarding the message to exactly one
neighbour. Some protocols will require broadcast or multicast. In SLOSL over-
lays, the unicast, multicast and broadcast schemes turn out to be identical, as
SLOSL already selects a set of nodes. Multicasting to a subset of the neighbours
is the same as broadcasting to a view that selects them. Broadcasting to a
view that selects a single neighbour from the only corresponding bucket is the
same as unicasting to that neighbour. SLOSL routing therefore incorporates all
three types of message forwarding in a general broadcast to all targets that
result from the evaluation of a view.
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Figure 5.1: General EDGAR graph for SLOSL routing

Figure 5.1 shows a general decision graph for SLOSL routing. In general, a
graph of this kind is all that is required to fully describe routing components.
The language used to express this graph is called EDGAR (see 6.3), Extensible
Decision Graphs for Adaptive Routing. Within the graph, messages arrive
from the left and are routed as follows.

The first match edges simply traverse their children in top-down order. If
a target is found, the routing process terminates and the message is forwarded
to the target. This corresponds to an ordered XOR evaluation. The first child
at the top-left has a predicate associated with it that tests if the message is
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to be accepted locally. Such a predicate is external to the graph and must be
provided by the overlay implementation. Depending on the topology, however,
the same decision may be available as a generic fall-back if the attempts to
route through the views fail. This is shown in the lower part of the figure.

The fork edge splits up the routing process and continues it in all of its
child branches independently, thus yielding an OR evaluation. In the case
shown in the figure this means that the message is broadcasted to both the
views 2 and 3 if no matching target is found during the evaluation of view 1.
If neither of the three views yields a target, routing continues with the two
fall-backs at the bottom.

The exclude last edge is used to tag a sub-tree. It prevents the node that
last forwarded the message from appearing in any of the target sets that are
found further down the decision tree. This is commonly used to avoid du-
plicates in broadcast or multicast forwarding, since the last hop has already
received the message. The feature obviously requires the last hop to be iden-
tifiable, which is the case in most physical networks. If it is not available from
the physical layer, this information can always be explicitly provided within
higher-level message headers. When used in combination with a first match
edge, the last hop is always discarded before testing the target set for success.

5.4.1 Examples

Specific routing strategies typically have simpler graphs than the one above, as
they do not exploit all possibilities. The Chord routing algorithm, for example,
is specified as in figure 5.2.

[ for me? ]

first match

finger
table

neighbour
sethandle error or drop

handle locally

Figure 5.2: Chord routing, implemented using SLOSL views

However, even more complex routing strategies, like the routing of multi-
cast messages over a Chord graph (similar to the Scribe approach), become
easily understandable when expressed using SLOSL routing graphs. Figure 5.3
shows the complete implementation for the forwarding of publications. The
example of implementing Scribe on top of the Chord overlay based on the
Node Views architecture is discussed in more detail in section 8.4.
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Figure 5.3: Scribe routing over Chord, implemented using SLOSL views

5.4.2 Iterative and Recursive Routing

As stated before, implementing EDGAR in a recursive routing scheme is straight
forward. Each node receives the message, takes its decisions and forwards it
to the next hop. However, it is also possible to implement EDGAR in iterative
routing schemes. Here, the source node repeatedly asks the next hop for its
successor, until it finds the destination node and sends the message directly.
Both schemes are displayed in figure 5.4.
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forward
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Figure 5.4: Iterative and Recursive Multi-Hop Routing

The two routing schemes have different quality-of-service characteristics.
In the iterative scheme, the source knows all hops and can deploy arbitrary
policies to decide if it trusts them and what it sends them. As opposed to
recursive routing, it has immediate feedback about the routing delay and about
node failures along the path. Obviously, the message overhead of the sender
is substantially higher.

In recursive routing, the message overhead is the same for each intermedi-
ate node (unless recursive ACKs are used) while the sender is relieved from
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the main work. If intermediate node failures occur, the delivery can only be
guaranteed if additional ACKs are in place. This also implies that multi-hop
forwarding can introduce arbitrary forwarding delays that are not controllable
by sender or receiver. An advantage for overlay networks is that the forwarding
path follows the topology, which can be optimised for that purpose (topology
adaptation).

Given the different characteristics of both schemes, it can be interesting to
configure the forwarding scheme as part of the implementation. This provides
an additional level of adaptation to application requirements.

The evaluation of EDGAR results in a set of nodes. However, the node that
takes the routing decision is not required to have the complete message avail-
able. It only needs to have the node data about the destination that is required
by the graph. The sender can create an incomplete node representation and
send it to a remote node to request its EDGAR evaluation. The remote node
responds with the resulting set of nodes and thus allows the sender to continue
its traversal of the topology.

5.5 Event Types of SLOSL Views

The Node Views architecture is largely event-driven. The events of incoming
and outgoing messages are handled by harvesters, controllers and routers. For
maintenance, however, the most important event source are SLOSL views. They
generate events for nodes appearing in or disappearing from views, or for views
or buckets that turn empty. This section overviews the different types of SLOSL

events that emanate from nodes, buckets and views.

Nodes. The simplest form of event is a node event. Nodes can enter or leave
views, and their attributes can be updated. The latter regards either
the attributes stored in the database or those calculated in the SELECT
clause of SLOSL statements. Note that the update of a node attribute can
trigger enter or leave events in dependent views after their re-evaluation.

Buckets. At the next level, buckets can turn empty when their last node
leaves or can become non empty when a node enters a previously empty
bucket. For views with a RANKED clause, buckets can also produce full
and not full events respectively, when the number of nodes reaches the
size of the bucket or falls below it.

Views. Being a set of buckets, views support the same event types. They can
become empty when the last node from the last non empty bucket leaves
or non empty when a node enters a previously empty view. Additionally,
views become full if a node enters the last empty bucket, or not full when
all buckets of the view were non empty and one of them turns empty.
Note that a full view does not require all of its buckets to be full. The



5.5. SLOSL EVENT TYPES 69

full event therefore means that the view no longer contains any empty
buckets. The case where all buckets of a view get filled up triggers the
buckets full event.

The descriptions above make it clear that there are dependencies between the
event types. They are displayed in figure 5.5. Note that the graph shows dif-
ferent ways of generating view (not) empty events, either from bucket events
or node events (dashed lines). Implementations can decide which one is more
efficient for them. They may let this depend on the events used in an imple-
mentation. If no bucket events are used, it is likely more efficient to generate
these events from node events directly.

There is an edge case where generating these events is not obvious from
the graph. As buckets can have a bounded size through the RANKED clause,
a node update can replace a node in a bucket. This will generate enter and
leave events for the impacted nodes. However, if the size is unchanged after
the update propagation, this operation must not generate bucket events or
view events in this case. From the point of view of event generation, each view
update should therefore be considered an atomic operation. Although this is
rarely hard to achieve in practice, implementors must be aware of it.
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OverML
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The Overlay Modelling Language OverML is a set of XML languages for
overlay specifications. It comprises the five necessary parts as described in the
previous chapters: node attributes, messages, view definitions, routers and
EDSM graphs. The following sections describe the syntax and semantics of
each language. A formal RelaxNG schema [CM01] is provided in appendix A.1.

Figure 6.1 illustrates the interaction between the five languages NALA (the
Node Attribute Language), SLOSL (the SQL-Like Overlay Specification Lan-
guage), EDGAR (Extensible Decision Graphs for Adaptive Routing), HIMDEL

(the Hierarchical Message Description Language) and EDSL (the Event-Driven
State-machine Language).

EDGARNALA Figure 6.1: The OverML Languages
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The main advantage of having an integrated set of languages is their clo-
sure, i.e. their self-containing interaction as the figure shows. SLOSL requires
NALA for a definition of the underlying database schema. HIMDEL relies on NALA

and SLOSL to define the semantics of message fields and view containers. EDGAR

uses SLOSL to make routing decisions about HIMDEL defined messages. EDSL uses
HIMDEL and SLOSL to infer the available events for messages and views.

6.1 NALA - The Node Attribute Language

EDGARNALA

NALA serves two purposes. First, it provides data
types for OverML that can be restricted or com-
posed into more complex types. Its main purpose,
however, is the definition of node attributes that
SLOSL works on.

Attributes can currently use a subset of the
data types defined for SQL [SQL92], but the XML
Schema data types [XSD04] are an alternative from

the XML world. A mapping between the two is provided as part 14 of the SQL
2003 standard [SQL03b]. In both cases, NALA allows the definition of custom
data types based on the available standard types.

6.1.1 Type Definition

The nala:types section in OverML defines the data types available to the
application. A possible list containing all standard types follows.

<nala:types
xmlns:nala=”http://www.dvs1.informatik.tu-darmstadt.de/research/OverML/nala”
xmlns : sq l= ”http://www.dvs1.informatik.tu-darmstadt.de/research/OverML/sql”>

<sql :big int name=” b i g i n t ” /> 64 bit integer

5 <sql:boolean name=”boolean ” /> true/false

<sql:bytea name=”bytea ” /> binary byte array

<sql:char name=”char ” /> fixed length unicode string

<sql:date name=”date ” /> calendar date

<sql:decimal name=”decimal ” /> arbitrary length integer

10 <sql:double name=”double ” /> 64 bit float

<sq l : inet name=” in e t ” /> IPv4/IPv6 address

<sql : integer name=” in t e g e r ” /> 32 bit integer

<sql : interval name=” i n t e r v a l ” /> relative time span

<sql:macaddr name=”macaddr” /> network MAC address

15 <sql:money name=”money” /> fixed point currency

<sq l : rea l name=” r e a l ” /> 32 bit float

<sql :small int name=” sma l l i n t ” /> 16 bit integer

<sql :text name=” text ” /> variable length unicode string

<sql:time name=”time” /> time of day

20 <sql:timetz name=” timetz ” /> time plus timezone

<sql:timestamp name=”timestamp” /> date and time
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<sql:timestamptz name=”timestamptz ” /> timestamp plus timezone

<sql:composite name=” tcpaddres s ” /> composite data type

25 <sq l : inet name=” address ” />
<sql :shortint name=”port ” />

</sql:composite>

<sql:decimal name=” id128 ” bits=”128”/> restricted decimals

30 <sql:decimal name=” id256 ” bits=”256”/>

<sql:array name=” i n t e g e r s ” /> typed sequence

<sq l : int />
</ sql:array>

35

<sq l : set name=”IPs” /> typed set

<sq l : inet />
</ sq l : set>

</nala:types>

Note how sql:decimal appears multiple times. The first (named ”deci-
mal”) is the normal SQL data type while the others are custom types. They
were given different names and restricted to a fixed bit size. As the names
suggest, they can be used for node IDs.

As this example also shows, the sql:composite data type allows compos-
ing multiple simple types into a single structured type. Similarly, the array
and set types define sequences and sets that contain items of a specific type.
Besides their wide-spread support in current programming languages, most
relational databases also provide an array type, whereas they would represent
the set type as a table.

6.1.2 Attributes

Any of the defined types can be used to specify node attributes. Each attribute
has a unique name. To further specify the semantics of the attribute, the
following flags can be used.

identifier If set, the attribute can be assumed to uniquely identify the node.
If a node carries multiple identifiers, each one is treated independently
as a unique identifier. This allows different levels of identification, most
notably physical and logical addresses. Note that multiple types (like IP
address and port) can be composed into a single new type, which can
then be used as a single identifier.

static If set to true, the attribute is assumed to be static once it is known
about a node. All identifiers are implicitly static, but not all static
attributes fulfil the uniqueness requirement of an identifier. Again, in-
consistencies must trigger events.
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transferable specifies whether it makes sense to include the attribute in mes-
sages. Some attributes (like the network latency to a neighbour or other
locally calculated distances) only make sense locally, so they should be
marked non-transferable.

selected activates the attribute for use in the database schema. Unselected
attributes can be defined in the specification without actually being part
of the data schema during execution. This is a pure convenience option
for developers.

There is one special type of attribute: a dependent attribute. Dependent at-
tributes are calculated based on other attributes. They must be updated
whenever the underlying attribute is modified. An example is the constant
ring distance between the identifier of a remote node and the local one in a
Chord overlay. It only depends on the identifier attributes and can be calcu-
lated once and then stored in the database. Other examples are aggregated
values, like the average latency over a sliding window. The lower change rate
of averaged attribute values is helpful when trading optimal topology adap-
tation against the cost of reconfiguration, such as opening connections and
exchanging state with new neighbours.

Simple dependent attributes can be expressed using MathML expressions
(type ”math”), while more complex ones reference an external function (type
”external”) that must be provided at compile time or deployment time. An in-
teresting future extension to OverML could support portable implementations
of more elaborate functions. However, it is not easy to provide such implemen-
tations in a programming language independent way, while at the same time
coming close enough to the expressiveness of a general programming language.
It is currently left to further research to find a suitable tradeoff.

There is another important application of dependent attributes. When
multiple overlay specifications from different authors are integrated into a sin-
gle application, they may not obey the same naming scheme for attributes or
use different data type representations for the same node attributes. Devel-
opers can deal with this by modifying the OverML specifications to use the
same data schema, or they can introduce dependent attributes that match the
schema of other specifications. If the overlap of different schemas is high, this
can be a fast and easy approach for an integration, as the overall number of
attributes in a NALA data schema tends to be small.

NALA makes the database aware of these dependent attributes. Threaded
implementations can therefore update them in a synchronised or transactional
manner to prevent premature update events. After calculating all dependent
attributes, a collective event can be triggered that avoids unnecessary view up-
dates or inconsistent attributes. Another possibility is to use lazy updating and
only mark dependent attributes as outdated. They can then be re-calculated
the next time they are accessed.
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An XML example specification of different attributes follows. Note that
(except for selected) the flags are represented as elements to simplify future
extensions.

<nala:attributes
xmlns:nala=”http://www.dvs1.informatik.tu-darmstadt.de/research/OverML/nala”>

<nala:attribute name=” id ” type name=” id256 ”
selected=” true ”>

5 <nala:stat ic />
<nala:transferable />
<nala : ident i f ier />

</nala:attribute>
<nala:attribute name=”knows pastry ” type name=”boolean ”

10 selected=” true ”>
<nala:stat ic />
<nala:transferable />

</nala:attribute>
<nala:attribute name=”knows chord” type name=”boolean ”

15 selected=” true ”>
<nala:stat ic />
<nala:transferable />

</nala:attribute>
<nala:attribute name=” chord d i s t ance ” type name=” id256 ”

20 selected=” true ”>
<nala:stat ic />
<nala:depends type=” ex t e rna l ”>

<nala:attribute−ref name=” id ” />
<nala :ca l l name=” ca l c u l a t e c h o r d d i s t a n c e ” />

25 </nala:depends>
</nala:attribute>
<nala:attribute name=” la t ency ” type name=” i n t e r v a l ”

selected=” true ” />
</nala:attributes>

6.2 SLOSL - The SQL-Like Overlay Specification
Language

EDGARNALA

The SLOSL language for view definitions is presented
in chapter 5. It describes the topology character-
istics of the resulting implementation. It is based
on node attributes as defined by NALA and provides
view definitions that can be referenced by the event
subscriptions of EDSL. Similarly, HIMDEL references
SLOSL views to include their content in messages,
and EDGAR uses them for routing decisions.

As SLOSL has its own chapter in this thesis (chapter 5), this section only
describes the XML representation of SLOSL as part of the OverML languages.
The format is presented for the following example, taken from 5.3.
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1 CREATE VIEW chord ne ighbours
2 AS SELECT i d=node . id , l o c a l d i s t=node . l o c a l d i s t , s i d e=s i gn
3 RANKED lowest (10 , node . l o c a l d i s t )
4 FROM db

5 WITH l o g k =160 , max id=2log k − 1
6 WHERE node . knows chord == true and node . a l i v e == true
7 HAVING abs ( node . i d − l o c a l . i d ) <= max id / 2
8 AND s i gn ∗( node . i d − l o c a l . i d ) > 0
9 OR abs ( node . i d − l o c a l . i d ) > max id / 2

10 AND s i gn ∗( node . i d − l o c a l . i d ) < 0
11 FOREACH s i gn IN (−1 ,1)

The XML representation follows. Note that mathematical expressions are
written in Content MathML1 [Mat03], which is a rather verbose language. It
is, however, also the best choice for representing the semantics of mathematical
expressions within XML languages.

<slosl:statements
xmlns:slosl=”http://www.dvs1.informatik.tu-darmstadt.de/research/OverML/slosl”
xmlns:mathml=”http://www.w3.org/1998/Math/MathML”>

<slosl:statement name=” chord ne ighbours ” selected=” true ”>
5 <s l o s l : s e l e c t name=” id ”> node . id </ s l o s l : s e l e c t>

<s l o s l : s e l e c t name=” l o c a l d i s t ”>
node . l o c a l d i s t </ s l o s l : s e l e c t>

<s l o s l : s e l e c t name=” s i d e ” type name=” sma l l i n t ”>
s i gn </ s l o s l : s e l e c t>

10

<slosl :parent>db</ s l o s l : p a r e n t>

<s los l :with name=” log k ”> 160 </ s los l :with>
<s los l :with name=”max id”>

15 <m:math>
<m:apply>

<m:minus/>
<m:apply>

<m:power/>
20 <m:cn type=” i n t e g e r ”> 2 </m:cn>

<m:ci> l o g k </m:ci>
</m:apply>
<m:cn type=” i n t e g e r ”> 1 </m:cn>

</m:apply>
25 </m:math>

</ s los l :with>

<slosl:where>
<m:math>

30 <m:apply>
<m:and/>
<m:apply>

1http://www.w3.org/TR/MathML2/chapter4.html (Aug. 30, 2006)

http://www.w3.org/TR/MathML2/chapter4.html
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<m:eq/>
<m:ci> node . knows chord </m:ci>

35 <m:true/>
</m:apply>
<m:apply>

<m:eq/>
<m:ci> node . a l i v e </m:ci>

40 <m:true/>
</m:apply>

</m:apply>
</m:math>

</ slosl:where>
45

<slosl :having>
<m:math>

<m:apply>
<m:or/>

50 <m:apply>
<m:and/>
<m:apply>

<m:leq/>
<m:apply>

55 <m:abs/>
<m:apply>

<m:minus/>
<m:ci> node . id </m:ci>
<m:ci> l o c a l . id </m:ci>

60 </m:apply>
</m:apply>
<m:apply>

<m:divide/>
<m:ci> max id </m:ci>

65 <m:cn type=” i n t e g e r ”> 2 </m:cn>
</m:apply>

</m:apply>
<m:apply>

<m:gt/>
70 <m:apply>

<m:times/>
<m:ci> s i gn </m:ci>
<m:apply>

<m:minus/>
75 <m:ci> node . id </m:ci>

<m:ci> l o c a l . id </m:ci>
</m:apply>

</m:apply>
<m:cn type=” i n t e g e r ”> 0 </m:cn>

80 </m:apply>
</m:apply>
<m:apply>

<m:and/>
<m:apply>

85 <m:gt/>
<m:apply>
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<m:abs/>
<m:apply>

<m:minus/>
90 <m:ci> node . id </m:ci>

<m:ci> l o c a l . id </m:ci>
</m:apply>

</m:apply>
<m:apply>

95 <m:divide/>
<m:ci> max id </m:ci>
<m:cn type=” i n t e g e r ”> 2 </m:cn>

</m:apply>
</m:apply>

100 <m:apply>
<m:lt/>
<m:apply>

<m:times/>
<m:ci> s i gn </m:ci>

105 <m:apply>
<m:minus/>
<m:ci> node . id </m:ci>
<m:ci> l o c a l . id </m:ci>

</m:apply>
110 </m:apply>

<m:cn type=” i n t e g e r ”> 0 </m:cn>
</m:apply>

</m:apply>
</m:apply>

115 </m:math>
</ slosl :having>

<slosl :buckets>
<s los l : foreach name=” s i gn ”>

120 <m:math>
<m:list>

<m:cn type=” i n t e g e r ”> −1 </m:cn>
<m:cn type=” i n t e g e r ”> 1 </m:cn>

</m:list>
125 </m:math>

</ s los l : foreach>
</ slosl :buckets>

<slosl:ranked function=” lowest ”>
130 <slosl:parameter> 10 </slosl:parameter>

<slosl:parameter> node . l o c a l d i s t </slosl:parameter>
</ slosl:ranked>

</ slosl:statement>
</ slosl:statements>

The XML representation is rather straight forward, although verbose due
to the lengthy MathML expressions. The main advantage of a structured
language like Content MathML over a string representation is the clearer,
well-defined semantics. It becomes trivial, for example, to determine the node
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attribute dependencies of an expression via a simple XPath expression like
.//math:ci. These dependencies are helpful for optimisations during execu-
tion or model transformation and source code generation (see 8.3).

Note the type name attribute in line 8 which refers to a NALA type defini-
tion. It allows specifying a type for a calculated view node attribute. This
overrides the type that would otherwise have been inferred from the expression.

6.3 EDGAR - Extensible Decision Graphs for Adap-
tive Routing

EDGARNALA

The simplicity of the routing decision graphs as
described in 5.4 directly translates into a simple
XML structure for EDGAR. It is a straight forward
hierarchical representation of the directed graph.
The example below is the XML representation of
the general EDGAR graph in figure 5.1.

All nodes in the EDGAR graphs are represented
as XML elements. The obvious execution plan is a
depth-first tree traversal. Predicates also become elements that surround their
target. A predicate element blocks traversal if the predicate fails. The exclude
last element is represented as a more general tag element that sets a tag on
the tree traversal process. Tags are evaluated before termination.

There are three ways to terminate the routing process. The exit elements
always terminate and jump to a specific target. The tryview elements eval-
uate their target view for possible candidates. If this succeeds, the process
terminates. The third way is to terminate the traversal without having hit a
matching target. In this case, the behaviour is platform-specific. Platforms
may raise exceptions or call global error handlers to handle this. The XML
code below prevents this case by terminating on an explicit error handler.

<routers
xmlns=”http://www.dvs1.informatik.tu-darmstadt.de/research/OverML/edgar”>

<router name=” examplary router ”>
<firstmatch>

5 <predicate name=” for me ”>
<exit target=” l o c a l h and l e r ” />

</predicate>
<predicate name=”db lookup”>

<exit target=” forward ” />
10 </predicate>

<firstmatch>
<tag type=” ex c l u d e l a s t ”>

<tryview target=”View1” />
</tag>

15 <fork>
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<tryview target=”View2” />
<tryview target=”View3” />

</ fork>
</ firstmatch>

20 <exit target=” e r r o r hand l e r ” />
</ firstmatch>

</router>
</routers>

6.4 HIMDEL - The Hierarchical Message Descrip-
tion Language

EDGARNALA

Messages combine attributes and other data into
well defined data units for transmission. They have
two sides: a software interface for reading and writ-
ing data field and a serialisation format for the wire.
HIMDEL is a hierarchical message specification lan-
guage that defines a generic software interface to
messages and allows for mappings to different seri-
alisation formats as binary data or XML.

As usual, messages are encapsulated in headers which are in turn encap-
sulated in network protocols. This makes them conceptually hierarchical. In
HIMDEL, message definitions consist of three top-level parts: protocols, top-
level headers and pre-defined containers. The rest of the specification follows
a hierarchy rooted in a top-level header, followed by encapsulated headers and
finally a sequence of data fields as content. Being an XML language, HIMDEL

presents this hierarchy in a natural way.

<msg:message hierarchy
xmlns:msg=”http://www.dvs1.informatik.tu-darmstadt.de/research/OverML/himdel”
xmlns : sq l=”http://www.dvs1.informatik.tu-darmstadt.de/research/OverML/sql”>

<msg:container type name=” id s ”>
5 <msg:attribute access name=” source ” type name=” id ” />

<msg:attribute access name=” dest ” type name=” id ” />
</msg:container>
<msg:header access name=”main header ”>

<msg:container−r e f access name=” addre s s e s ”
10 type name=” id s ” />

<msg:message type name=” j o i n r e q u e s t ” /> < !−− 1 s t m e s s a g e −−>
<msg:message type name=”view message ”> < !−− 2 n d m e s s a g e −−>

<msg:viewdata structured=” true ”
access name=” f i n g e r t a b l e ”

15 type name=” cho r d f i n g e r t a b l e ” />
</msg:message>
<msg:header>

<msg:content access name=”type”
type name=” s q l : s m a l l i n t ” />
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20 <msg:message type name=” typed message ”> < !−− 3 r d m e s s a g e −−>
<msg:content access name=”data”

type name=” s q l : t e x t ” />
</msg:message>

</msg:header>
25 </msg:header>

<msg:protocol access name=”tcp” type name=”tcp”>
<msg:message−r e f type name=”view message ” />
<msg:message−r e f type name=” typed message ” />

</msg:protocol>
30 <msg:protocol access name=”udp” type name=”udp”>

<msg:message−r e f type name=” j o i n r e q u e s t ” />
</msg:protocol>

</msg:message hierarchy>

In this representation, messages become a path through the hierarchy that
describes the ordered data fields (i.e. content and attribute elements) that are
ultimately sent through the wire. Message data is encapsulated in the header
hierarchy that precedes it on the path. Headers and their messages are finally
encapsulated in a network protocol, apart from their specification. This makes
it possible to send the same message through multiple protocol channels and
to decide the best protocol at runtime.

As the example shows, multiple messages can be defined within the same
header, which makes them independent messages using this header. When
following a message path, other messages and headers are completely ignored.
For example, the ’join request’ message in the example is not part of the
’typed message’, although it precedes it on the path.

To assure the uniqueness of these paths, all children of a parent element
must have distinct names. Additionally, fields and containers must be uniquely
named along each path, meaning that no field or container has the same name
as any of its ancestors. However, only the names of top-level containers and
headers, and of all messages and protocols must be globally unique in the
specification.

The tag order on the message path is also important. It describes the
field order when serialising data, but it also defines the data fields that are
actually contained in a message. If a header is extended by content or container
elements after the definition of a message, the preceding messages will not
contain the successor fields, which are not on its path. In the example, the
’view message’ will not contain the content field named ’type’. This field is,
however, available in the ’typed message’ and all messages that are defined
later under the same header tag.

As shown in the example, container elements can also be used at the high-
est level inside the message hierarchy tag. However, their definition is not
part of the message hierarchy itself. They only predefine container modules
for replicated use in headers and messages where they are referenced by the
type name attribute of container-ref elements.
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6.4.1 Programmatic Interface to Messages

The programmatic access to messages and their fields is defined using the
access name tag. Note that this follows the hierarchy only for containers and
message content. Headers are accessed directly, as is protocol data. Accessing
the fields of a message from an object oriented language should look like the
following Python snippet.

def r e c e i v e v i ew mes sage ( view message ) :
ne t addre s s = ( view message . tcp . ip , view message . tcp . port )
main header = view message . main header
s ou r c e i d = main header . addre s s e s . source
f i n g e r nod e s = view message . f i n g e r t a b l e

The rules for building the access path are as follows. They allow for a
relatively concise, but nevertheless structured and well defined access path to
each element. The reference implementation provides this algorithm as an
XSL transformation [XSL99] of HIMDEL (see appendix A.6).

1. As the basic unit of network traffic, a message is always the top-level
element.

2. Every child of a message is kept as a second level element, referenced by
its access name.

3. Entries within containers are referenced recursively, namespaced by the
access name of their parent.

4. Following the path from the message back to the root header, all head-
ers and also the protocol become additional second-level elements, refer-
enced by their access name. Their child fields and container elements are
referenced recursively as before. Children of nameless headers become
elements of the parent header.

Software components can then subscribe to message names or header names
in a hierarchical way and thus define the part of the message that is actually
of interest to them. A simple subset of the XPath language [XPa99] naturally
lends itself for defining these subscriptions. Note that even expensive abbrevi-
ations like ’//’ can be resolved at compile time or deployment time based on
the message specifications.

The programmatic interface additionally defines two message properties
last hop (a node if the last hop of a message is known) and next hop (a node
if the next hop was already determined by a router).

6.4.2 Network Serialisation of Messages

There are a number of possible network representations for messages. Their
choice depends on frameworks and languages and is therefore outside the scope

http://www.w3.org/TR/xpath
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of the platform independent model provided by OverML. The following de-
scribes two possible mappings that model transformations can follow.

The SQL/XML standard [SQL03b], as published in 2003, provides a well
defined mapping of SQL data types to XML Schema. This should be consid-
ered the preferred method for message serialisation to XML. In this case, the
hierarchical structure of the message specifications can directly be mapped to
an XML serialisation format.

Another, currently more common serialisation is the XDR data model [Sun87,
Sri95], originally developed by Sun Microsystems2 for their ONC-RPC [Sun88].
The mapping from the message specification to a flat serialisation is straight
forward when laying out the data top-down along the message paths.

6.5 EDSL - The Event-Driven State-machine Lan-
guage

EDGARNALA

EDSL is a graph language for describing event-driven
state machines. It is based on states and transi-
tions, like any state machine description. States
represent stages of code execution, while transi-
tions connect processing chains and describe events
that trigger new states. Being a graph language,
EDSL has a straight forward transformation to the
well-known DOT language of graphviz. An imple-
mentation is provided in appendix A.2. It allows for easy visualisation of EDSL

graphs. Figure 6.2 illustrates an example of such a graph.

Message Handling Subgraph

start

Not Joined

Timeout

entryJoin Message
received

all done

handle message exit

Figure 6.2: Example of an EDSL graph

The main advantage of EDSL over other languages for state machines3 and
graphs (like the DOT language4) is its awareness of SLOSL and HIMDEL. EDSL

allows transition triggers to be expressed based on data fields that occur in

2http://www.sun.com
3http://www.elude.ca/ragel/, http://fsmlang.sourceforge.net/,

http://research.microsoft.com/fse/asml/default.aspx, etc. (Aug. 30, 2006)
4http://graphviz.org/doc/info/lang.html (Aug. 30, 2006)

http://www.sun.com
http://www.elude.ca/ragel/
http://fsmlang.sourceforge.net/
http://research.microsoft.com/fse/asml/default.aspx
http://graphviz.org/doc/info/lang.html
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incoming messages as defined by HIMDEL, or based on events that occur in
views defined by SLOSL. It therefore becomes possible to raise the level of
framework independence by specifying semantically rich transitions based on
OverML instead of hand-written code.

The envisioned execution model behind EDSL is a state machine that sup-
ports multiple active states at the same time. In literature, such concurrent
states are commonly referred to as ”and” states, as in state charts [Har87,
HP98]. They are common case in event-driven state machines, which keep
multiple pending states and select between them based on I/O events.

The execution model also allows for long-running states. These are states
that stay active even if one of their transitions has fired. This is helpful for
generic message dispatcher states that keep receiving messages and forward
them through their transitions. It also allows for concurrency in output chains
where a state outputs several data items, one after the other, that are then
handled by the successor states concurrently. Exiting such a state and con-
trolling its runtime behaviour has to be done programmatically, though, as it
is not part of the graph description that EDSL provides.

The following listing shows the EDSL description of the graph in figure 6.2:

<edsl:edsm
xmlns:edsl=”http://www.dvs1.informatik.tu-darmstadt.de/research/OverML/edsl”>

<edsl :states>
<edsl :state name=” s t a r t ” id=”1137068428”>

5 <edsl:readablename>s t a r t</edsl:readablename>
</ edsl :state>
<edsl :state name=” state000001 ” id=”1137069916”>

<edsl:readablename>Not Joined</edsl:readablename>
</ edsl :state>

10 <edsl:subgraph name=”subgraph000001” id=”1137119516”
entry state=”1137119324” exit state=”1137119612”>

<edsl:readablename>Message Handling
Subgraph</edsl:readablename>

<edsl :states>
15 <edsl :state name=” entry ” id=”1137119324”>

<edsl:readablename>entry</edsl:readablename>
</ edsl :state>
<edsl :state name=” ex i t ” id=”1137119612”>

<edsl:readablename>e x i t</edsl:readablename>
20 </ edsl :state>

<edsl :state name=” state000002 ” id=”1137121100”>
<edsl:readablename>handle message</edsl:readablename>

</ edsl :state>
</ edsl :states>

25 <edsl :transit ions>
<edsl :transit ion type=”outputchain ”>

<edsl:from state ref=”1137119324”/>
<edsl :to state ref=”1137121100”/>

</ edsl :transit ion>
30 <edsl :transit ion type=”outputchain ”>

<edsl:from state ref=”1137121100”/>
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<edsl :to state ref=”1137119612”/>
</ edsl :transit ion>

</ edsl :transit ions>
35 </edsl:subgraph>

<edsl :state name=” state000003 ” id=”1137122012”>
<edsl:readablename>a l l done</edsl:readablename>

</ edsl :state>
</ edsl :states>

40 <edsl :transit ions>
<edsl :transit ion type=”message”>

<edsl:from state ref=”1137068428”/>
<edsl :to state ref=”1137119324”/>
<edsl:readablename>Join Message r e c e i v ed</edsl:readablename>

45 <edsl:messagetype>/ jo in mes sage</edsl:messagetype>
</ edsl :transit ion>
<edsl :transit ion type=” timer ”>

<edsl:from state ref=”1137068428”/>
<edsl :to state ref=”1137069916”/>

50 <edsl:timerdelay>120000</edsl:timerdelay>
<edsl:readablename>Timeout</edsl:readablename>

</ edsl :transit ion>
<edsl :transit ion type=” t r a n s i t i o n ”>

<edsl:from state ref=”1137069916”/>
55 <edsl :to state ref=”1137122012”/>

</ edsl :transit ion>
<edsl :transit ion type=” t r a n s i t i o n ”>

<edsl:from state ref=”1137119612”/>
<edsl :to state ref=”1137122012”/>

60 </ edsl :transit ion>
</ edsl :transit ions>

</edsl:edsm>

Comparing the verbosity of state machine languages like EDSL with the
clean and readable graph in figure 6.2 makes a convincing case for the visual
design of event-driven state machines. This argument also holds against the
implicit implementation of these graphs in source code, as required by most
current EDSM frameworks. It is therefore a substantial improvement for de-
velopers to design protocols visually (as with the SLOSL Overlay Workbench,
see 8.1.4) and to simply generate machine readable EDSL specifications and
source code implementations from these graphs.

6.5.1 States

States in EDSL are points of execution. There is one special state called start
at the top level that is activated at startup. All other states are activated
through subsequent transitions. As for terminology, the transitions of a state
designate the transitions that lead away from that state towards other states.

States are components of the EDSM that follow a simple, but very generic
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model of component interaction. It was exemplified by the Axon framework5,
which was in turn inspired by Unix pipes. The Axon model provides compo-
nents with named pipes for input and output. Components react to objects
being passed in through any of their input pipelines and respond by writing ob-
jects to any of their output pipelines. The model provides a very generic view
on component interaction, similar to subject based publish-subscribe. EDSL in-
herits the simplicity of this model. It extends it to a complete graph description
that makes transitions explicit and augments the semantics of events.

States can currently have two additional boolean attributes that are de-
scribed further down: long running and inherit context. Both default to
false. While concrete frameworks may encourage diverging ways of implement-
ing states, the abstract behaviour of a state is as follows.

1. On activation, the state is instantiated and receives the status waiting.

2. Depending on the framework specific scheduler, the state eventually be-
comes running and is executed within the EDSM.

3. It can then produce output or request a modification of its status.

4. The execution of a state is atomic with respect to its transitions. This
means that none of the transitions can fire away from a state during the
execution of that state, which is the common case in EDSM frameworks.
Note that atomicity only addresses the transitions of the state itself.
Frameworks can execute as many states in parallel as they support.

5. Short running states (having long running=false) receive the status
terminated when they

• produce output
• request to be terminated
• have finished execution and one of their transitions has fired. Since

execution is atomic, there is always a first event that fires after
execution, so the transition that terminates the state is well defined.

6. Long running states are only terminated when they explicitly request
to be terminated. This implies that any number of transitions can fire
on them after execution has finished. Note that it is up to concrete
frameworks to provide ways to let long running states determine whether
their execution should be restarted after having finished or whether they
should stay idle but active (sometimes called a zombie status).

7. Depending on the framework, active states (long running or not) may be
able to temporarily interrupt their execution by actively yielding control
back to the framework. The framework can then decide when to con-
tinue the execution. This is commonly used in single threaded EDSM

5http://kamaelia.sourceforge.net/Docs/Axon.html (Aug. 30, 2006)

http://kamaelia.sourceforge.net/Docs/Axon.html
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frameworks that cannot afford to miss I/O events during long calcula-
tions. This feature does not impact the atomicity constraint and leaves
the state running.

The inherit context flag of a state is meant to simplify the programming
of individual states. Very often, processing chains in EDSMs are interrupted
by I/O activity like sending messages and having to wait for an answer. The
exact meaning of this flag is framework specific. However, setting it on a state
will ask the framework to propagate an execution context from the previous
state to this one during the transition. It therefore provides a simple way of
propagating variables, configuration or other forms of processing status within
a chain of execution.

6.5.2 Transitions

Transitions connect states and define the flow of execution. They are triggered
by events which EDSL defines based on the following types:

Messages The arrival of a message. Subscriptions to messages are expressed
in XPath based on the message content paths as described in section 6.4.1.
In figure 6.2, the message transition is subscribed to the reception of any
join message, without further restrictions.

View events Events that occur in views defined by SLOSL (see 5.5).

Timers Delay triggered events. The delay is expressed in milliseconds.

Output chains All output of the source state is handed on to the target
without modification. Frameworks may force the target state to become
long running if the source state is.

Direct advances Immediately activate the target state when entering the
source state, thus essentially merging the two states. This special transi-
tion does not require any events or output of the state to be fired. Since
it is only fired on state activation, even long running states can deploy
it. A possible use case is the design decision to split a single I/O state
into semantically different parts.

6.5.3 Subgraphs

EDSL supports subgraphs within a state machine. These are complete state
machines themselves that may have further subgraphs besides their states and
transitions. Subgraphs have two predefined states, entry and exit, that connect
with the parent graph by reproducing their incoming events.

The main use cases for subgraphs are harvesters and other complex control
components. They can be plugged into the graph and are globally triggered



88 CHAPTER 6. OVERML

and configured as part of the EDSM. Their integration and interconnection
through the EDSL component model simplifies their reuse in different overlays.

Subgraphs are only used at design time to reduce the complexity of EDSM
designs by semantic modularisation. States are always referenced by internal
identifiers that are unique to the complete graph. It is therefore a straight
forward transformation to flatten subgraphs by merging them into their parent
graph. Flat graphs can then be mapped to EDSM frameworks more easily.
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As companions of database and views, harvesters are a very important part
of the middleware. Their main purpose is to maintain the local view of a node
by updating the node database with data relevant to the currently available
view definitions. This means finding new nodes, as well as determining and
maintaining their attributes, but also deleting nodes from the database.

There are a number of possible schemes for these tasks out of which the
designer of an overlay system can select the most appropriate ones. Having a
choice of harvester components available allows overlays to provide very diverse
characteristics.

Harvesters work on views, nodes and node attributes. They can be simple
controllers, but are more commonly complex EDSL compositions of controllers,
i.e. EDSL subgraphs. Where controllers are more of an atomic implementation
detail of a protocol, harvesters are functional components that implement a
specific subtask in the maintenance of an overlay. As seen in Gridkit (8.4), they
are often independent of specific overlays and can be provided as middleware
components.

For example, the harvester task of finding new nodes can be implemented in
various different ways based on broadcast, active lookup, overhearing routed
messages, central discovery services, etc. Gossip (or epidemic communica-
tion [VvRB03, JGKvS04, RGRK04]) has a straight forward implementation
in the Node Views architecture that exchanges views between overlay mem-
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bers. The attributes of nodes are either measured locally or requested from
the nodes. It is up to the specific harvester implementation how this is done
and up to its configuration how often this happens. Also, when nodes have
locally disappeared from all views, the application must decide if (and how
long) they should remain in the database.

The following sections exemplarily discuss four different kinds of harvesters
that implement these kinds of functionality. Note that much of what is said
here can be applied in similar ways to other harvester types and implementa-
tions.

7.1 Gossip-based Node Harvesters

The idea behind epidemic communication is to spread knowledge to all mem-
bers of a system similar to an epidemic, i.e. by periodically “infecting” ran-
domly chosen members. On each contact, a member communicates data to
another member who can then start to infect others. This leads to an expo-
nential data distribution while keeping the load at each member low and the
communication cost configurable.

As an example, we can look at a Pastry derivative called Bamboo [RGRK04].
It uses multiple epidemic maintainers for its local data structures. The leafset
maintainer periodically exchanges this set with one of the nodes therein. Two
routing table maintainers query member nodes and try to fill empty entries.

Note that in Bamboo and Pastry, most of the nodes in the leafset will
also be in the routing table. If an attribute of a local node representation
states that a node has not been queried by another component or otherwise
responded for a while, it may be a good candidate for a ping, while a node
that is already frequently queried by the leafset maintainer should not be
additionally queried by the routing table maintainer. The local consistency
provided by the node database naturally supports the coordination between
these maintenance components and simplifies their implementation.

Jelasity etal. [JGKvS04] introduced the “Peer Sampling Service” (PSP). It
is an overlay service for choosing good candidates for epidemic contact. Their
analysis is focused on communicating the availability of nodes in unstructured
networks by exchanging address data. This allows them to abstract from the
actual way in which data is exchanged. However, if structured networks, mul-
tiple overlays or adaptable topologies have to be maintained, the information
that must be exchanged is usually more complex.

Node set views directly support epidemic communication. Obviously, the
exchange of data about well-selected nodes is an exchange of node set views.
Views are created using a SLOSL statement which can be seen as a query on
the node database. Once a view is defined, its data is also precisely defined
and can be sent to any node by a simple call to the framework. The view
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definition even allows to infer an implicit message format description.
In this model, an exchange of views means the symmetric evaluation of a

query in two different databases. The two results are then exchanged and used
to update the other database. The PSP distinguishes three cases: sending,
receiving and exchanging views. These cases determine in which database(s)
the query is executed. Rhea etal. describe them in a similar way for the
Bamboo system [RGRK04] and show cases where the symmetric exchange is
necessary to assure eventual consistency between neighbours.

Current systems implicitly code the query into the overlay software. This
resembles materialised views and stored procedures in databases. They are
commonly used when performance is essential and changes are rare. In some
cases, however, they are premature optimisations that come at the cost of
lower adaptability. Their use makes software harder to configure and adapt at
run-time.

The Node Views model makes these queries explicit and shows that it is
perfectly valid to ship the query (or a parametrisation of it) as part of the
view exchange. This may be used for adapting the overlay topology to the
capabilities of its members. For example, a high performance node may want
to augment its view by sending broader queries. This can decrease the end-
to-end latency it experiences by allowing single hops towards a larger number
of nodes. Similarly, a less powerful node may decide to restrict its view by
sending queries with higher selectivity.

One of the problems in gossip overlays is how to handle dead nodes. Most
commonly, dead nodes are simply removed from the local view and will there-
fore not appear in gossip messages [RGRK04]. This forces nodes to redun-
dantly find out about their failure. In the Node Views approach, the node
database can simply keep data about dead nodes without adding any over-
head to the software components. Node selection prevents dead nodes from
appearing in local views. Remote nodes, however, can send queries for dead
nodes as well as live nodes. Messages and database can both use timestamps
to constrain the relevance of such data.

SLOSL and node set views make it trivial to write overlays based on gossip
or other ways of exchanging node data. At the same time, they decouple
the data acquisition part of the maintenance algorithm and allow other (non-
gossip) harvesters to take over if different characteristics are needed.

7.2 Latency Harvesters

Among the node attributes, the latency between overlay members is the most
important parameter for overlay adaptation. It can be used as a criterion
whenever multiple candidates for choosing neighbours or forwarding messages
exist. A latency harvester can measure or estimate this latency. While mea-
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suring usually involves pings or ACKs, there are a number of recent proposals
that allow ping-free, resource efficient estimates for the physical latency be-
tween nodes. Some use virtual coordinates [PCW+03, DCKM04], others query
the routing infrastructure (BGP) of the physical network [NPB03].

Though these are very different approaches, they all follow one common
goal: determine the end-to-end latency between the local node and a remote
node. The node database and its views provide an intermediate layer that
decouple the harvesters from other components like routers. They hide the
way how the latency information is found. SLOSL then provides direct support
for converting the values of different sources when showing them in views. This
allows the overlay to switch between different approaches based on accuracy
and load requirements without affecting components that use this information.

Virtual coordinate systems also gain from overlay integration. Only a single
harvester instance that works at the database level is needed to determine the
coordinates of nodes in different overlays. This broadens the base of nodes
and leads to more accurate models even for smaller overlays.

7.3 Sieving Harvesters

So far, we have only regarded the process of adding new nodes and updating
their attributes. However, when harvesters keep adding nodes, there must also
be a mechanism that removes nodes that are no longer in scope of any view.
If nodes are not visible in views, their attributes will tend to become outdated
more easily than those of active communication partners. On the other hand,
keeping track of too many nodes can lead to an exhaustive message load.
Collecting the data of too many nodes in the local database can also reduce
the run-time performance of the system. Overlay nodes must therefore trade
their resource consumption against the value of locally available data.

In the Node Views architecture, the problem of keeping nodes available in
the database is reduced to a caching problem. Nodes that are visible in views
must be kept in the database. Nodes that are not visible in views may be kept
in the database. Which invisible nodes should be removed?

In many overlay implementations today, only the topology neighbours are
kept in the local view. This is equivalent to removing each node from the
database that is discarded from a view and no longer visible in any other. A
harvester connected to the enter and leave events can easily achieve this.

However, some systems have found additional knowledge to be a good
thing, e.g. for neighbour redundancy [ZHD03] or fallback candidates [MCKS03].
Systems based on the Node Views architecture can trivially benefit from addi-
tional locally available knowledge, as they already select subsets of nodes from
a larger database. More knowledge allows them to take more decisions locally,
without necessarily having to send messages. These systems should prefer a
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garbage collection scheme where nodes are removed from the database based
on common caching policies.

Due to the generic interfaces of views and the specific events they generate,
generic harvesters can implement basically any kind of caching scheme. It is an
important property of this approach that the chosen policies are independent
of overlay implementations and may be freely changed at run-time. Usually,
this can even be done locally on a per node basis without remote interaction,
since it only impacts the local representation of nodes that are not currently
chosen as communication partners. This allows each node to determine and
follow its locally optimal strategy.

7.4 Distributed Harvesters

Darlagiannis and others recently presented Omicron [DMS04], a design study
for structured overlay networks. The idea is to split the algorithm that each
overlay member traditionally executes into a number of simpler services that
have different requirements. These services are then distributed over a cluster
of nodes. This has two main advantages. Cluster nodes can provide a service
that matches their capabilities instead of struggling to execute all services
needed by the overlay. Secondly, it allows for replication within the cluster to
increase the reliability of specific services.

However, this approach also comes at the cost of additional overhead in-
side each cluster. Omicron identifies four basic services in a DHT overlay:
maintenance, indexing, routing and caching. Members of the same service in-
terconnect between clusters. Therefore, each of the four services is provided
by a different overlay while the cluster itself represents a fifth type of overlay.
The maintainers have a special role. At the inter-cluster level, they exchange
data about the nodes in their clusters. Inside their own cluster, they provide
the other members with interconnection candidates from other clusters.

Node set views provide straight forward support for this exchange of views
between cluster maintainers as well as between members of a cluster. The
maintainer only needs to know the view definitions of each cluster member and
can then send specific updates for their views. Similarly, when it communicates
with the maintainers of other clusters, it can exchange its local view with them.
In this model, the approach taken by Omicron mainly becomes a distributed,
hierarchical database.

There is a possibility of extending this scheme into the architectural design.
A distributed implementation of the Node Views architecture could reduce
the overhead of the lower participants even further. Such a system would
implement the complete architecture at the maintainers and replicate only the
materialisation of views at the lower cluster participants. Their updates and
view events would then be generated remotely by the cluster maintainer. Such
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a design allows routers to use static routing tables and to update them very
specifically without the overhead of event generation from a local database.

The tradeoff between fast, static tables at the lower participants and the
availability of the more capable general architecture for taking their own local
decisions is a design choice for the implementation. It mainly depends on the
expected capabilities of the cluster participants. The Model Driven Architec-
ture approach makes it possible to configure these kinds of implementations
details at the model transformation and code generation level.
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The concepts developed in this thesis were validated through a proof-of-
concept implementation. It currently comprises three parts:

1. The SLOSL Overlay Workbench1 [Beh05b], a graphical overlay design
front-end for OverML specifications. It is written in the Python language
and uses the Qt toolkit for its graphical user interface.

2. A preliminary, interpreted OverML run-time environment. It is written
in the Python language and uses the Twisted EDSM framework2.

3. Exemplary model transformers for SLOSL and OverML that show how to
build source code generators for different programming languages.

The Workbench allows the development of language neutral and platform inde-
pendent overlay models (PIM) in OverML that can be transformed to language
specific EDSM environments via the Model Driven Architecture approach.

1http://developer.berlios.de/projects/slow/ (Aug. 30, 2006)
2http://www.twistedmatrix.com

http://developer.berlios.de/projects/slow/
http://www.twistedmatrix.com
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8.1 The SLOSL Overlay Workbench

In the Model Driven Architecture of Node Views, the abstract specification of
overlay software is developed in five steps by defining node attributes, mes-
sages, SLOSL views, routing decision graphs and an EDSM graph to connect the
controller states. Being an OverML front-end, the workbench directly oper-
ates on an XML model. This enables common XML technologies like XPath,
XSLT, RelaxNG and XInclude for its implementation, that allow for model
modularisation, validation and transformation.

8.1.1 Specifying Node Attributes and Messages

The first step in the design of an overlay network is the specification of node
attributes. The user interface for this is shown on the left side of figure 8.1.

Figure 8.1: Defining node attributes and messages in the Overlay Workbench

In the bottom left corner, the developer specifies and restricts data types,
as supported by NALA. Based on these types, node attribute specifications are
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added to the list in the centre of the window. The attribute flags identifier,
static and transferable are set directly below the names of the attributes.

The right most part in the figure allows to integrate the attributes into
HIMDEL messages. Messages are data structures that build on a basic network
protocol. They contain embedded header and content parts in a hierarchical
fashion. This hierarchy is directly reflected in the tree structure on the right
side of the GUI. The messages are defined below the entry Messages.

Above the actual messages, the workbench allows the definition of prede-
fined containers. They are modules that can be reused in different parts of the
message hierarchy. Container references are added to messages via drag-and-
drop.

8.1.2 Writing SLOSL Statements

The next step in overlay design is the definition of the local views. This is
done with SLOSL, as shown in figure 8.2.

Figure 8.2: SLOSL statements in the Overlay Workbench
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The currently defined SLOSL statements are listed on the left and can be
selected by mouse click. The right part of the window shows the editor for
defining the different SLOSL clauses.

8.1.3 Testing and Debugging SLOSL Statements

Once the SLOSL statements are defined, the topology simulator can be used to
test and simulate their effect by executing them in different scenarios. The
SLOSL language makes the simulator a powerful tool for this purpose. The
developer implements the scenarios in source code, but can completely abstract
from the networking nature of the simulated topology. This makes the scenario
implementation both simple and short.

Figure 8.3: Visualising and testing SLOSL implemented topologies

The idea follows directly from the Node Views architecture. The setting
deploys a number of nodes in the topology that have a certain knowledge about
the attributes of the other nodes. Their local view is then used to establish the
SLOSL views that form the topology graph. The example in figure 8.3 shows
the following source code for the chord fingertable view (see 5.1). Note that
the code has global access to the options defined in the SLOSL WITH clause.
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1 NODES = 10
2 MAX ID = max id # use the option value from the SLOSL statement
3

4 for n in range (0 , MAX ID, MAX ID // NODES) :
5 buildNode ( id=n)
6

7 def make fore ign ( l o ca l node , a t t r i b u t e s ) :
8 ”””Do something with the node a t t r i b u t e d i c t i onary ,
9 then return i t . Returning None or an empty d i c t

10 w i l l d i s ca rd the node . ”””
11 a t t r i b u t e s [ ”knows chord” ] = True # set trivial attributes
12 a t t r i b u t e s [ ” a l i v e ” ] = True
13

14 d i s t = a t t r i b u t e s [ ” id ” ] − l o c a l node . id # calculate ring distance
15 i f d i s t < 0 :
16 d i s t = MAX ID + d i s t
17 a t t r i b u t e s [ ” l o c a l c h o r d d i s t ” ] = d i s t
18 return a t t r i b u t e s # return node attributes

In line 4-5, the script sets up the nodes that participate in the simulation.
The nodes are created and given a specific value for their node attribute id.
This basically defines the global view of the system. The function make foreign
is the place where the local view of each node is constructed. At each node,
it is called once for each node that is made known locally. It can then modify
the attributes of that foreign node before it is added to the local database. It
can even decide to ignore the node completely.

The example above only calculates the exact mapping from the global view
to the global view of each node, which provides each node with a complete local
view. However, by simply varying the node attributes within this function, the
developer can implement arbitrary scenarios of nodes knowing each other or
not, nodes having failed but still being considered alive by others, or different
update propagation states of node attributes. The resulting topology will then
be calculated and visualised based on SLOSL evaluation against the globally
inconsistent local database of each node.

8.1.4 Designing Protocols and Harvesters

As the final design step, the developer can now build the general structure
of the overlay protocol by defining an EDSM graph that interconnects states
of execution by events. The user interface for this design phase is shown in
figure 8.4. While simple harvesters can be represented as a single state, more
complex ones can be expressed as subgraphs, which makes the overall design
modular.

The graph at the right of figure 8.4 visualises the entire EDSM graph. Sub-
graphs are merged into the graph and displayed within a rectangular border.
The left part of the window shows the design area. Here, subgraphs are repre-
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Figure 8.4: EDSM definition in the Overlay Workbench

sented as icons, just like states. Their innards are accessible through the tab
bar above the design area.

8.1.5 OverML Output

At any time, the current OverML specification can be written to a file that the
user can feed into an execution environment or a source code generator. The
result obeys the schema in appendix A.1.

The workbench also supports a transformed output format that translates
the HIMDEL hierarchy into separate messages and flattens the EDSL graph. This
simplifies the output and makes it more suitable for subsequent transforma-
tions into executable code.
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8.2 Implementing SLOSL

SLOSL is the most important language within OverML. The other four languages
have either straight forward implementations (NALA and EDGAR) or can deploy
well-known EDSM and messaging frameworks for their implementation (EDSL

and HIMDEL). This section therefore describes a simple SLOSL interpreter that
was written as a proof-of-concept implementation, as well as a transformation
from SLOSL to the Structured Query Language (SQL).

8.2.1 Transforming SLOSL to SQL

As an SQL-like language, it is possible to map SLOSL to nested SQL state-
ments, although in a rather expensive way. Some possible optimisations and
tradeoffs are mentioned in this section, but were not further investigated in
the course of this work. Due to the expensive evaluation of the resulting SQL
queries, it is unlikely that frameworks will deploy such a mapping for real-time
execution in deployment environments. Therefore, this SQL implementation
is only provided as a proof of concept and for general interest.

Mapping the clauses that were borrowed from SQL is trivial. The general
idea is to create the node database as a table with node attributes. This
supports a direct mapping of these SLOSL clauses to the equivalent SQL clauses.
The WHERE clause is evaluated directly on this table or on the union of the
parent views, depending on the FROM clause. For simplicity, the result will
be referred to as the node table from now on. A mapping of the remaining
clauses WITH, HAVING–FOREACH and RANKED, that are specific to SLOSL,
is worth further explanation.

The WITH clause can trivially be mapped to tables holding the values
of the declared names. This implies joining them with the node table on
query evaluation. Another possibility is to replace options by their constant
value within the statement. This would require views to be re-instantiated
when options are modified. Obviously, this is the most efficient solution for
design-time and deployment-time options that are never (or rarely) changed
at run-time.

The next step is to instantiate a table for the values of each bucket variable
declared by a FOREACH statement. These tables are joined with the node
table based on the HAVING expression. The result is a table which relates
node attributes to matching variable values. Note that the node attribute rows
of a node may end up in multiple rows of the result.

The next step is the evaluation of the RANKED clause. This means evalu-
ating the ranking expression for each row. Obviously, if the ranking expression
does not depend on the variables, it may be more efficient to evaluate it only
against the node table before running the joins. In some cases, it may even
make sense to store its precomputed result directly in the database to avoid
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further evaluations. This is the usual tradeoff between space and time, which
parametrises the mapping between SLOSL and SQL.

The second part of the RANKED evaluation can only be done after the
HAVING joins. The ranking and elimination step implies grouping the rows
by distinct sets of variable values, sorting the rows in each group by their
ranking, counting the rows and eliminate the super-numerous ones.

The following listing presents a possible template for generating the corre-
sponding SQL statement.

CREATE VIEW [ view name ] AS
SELECT noderank , db node id ,

3 [ v a r i a b l e s ] , [ s e l e c t a t t r i b u t e c a l c u l a t i o n ]
FROM (

SELECT node . db node id , [ v a r i a b l e s ] , [ s e l e c t a t t r i b u t e s ] , (
6 SELECT COUNT(∗ )

FROM (SELECT ∗
FROM [ parents ] AS node ,

9 WHERE ( [ where expre s s i on ] ) AND ( [ hav ing expr e s s i on ] )
) AS node

WHERE ( [ node rank expr ] ) [ rank cmp op ] ( [ rank expr ] )
12 ) AS noderank

FROM [ l o c a l n o d e t a b l e ] AS local ,
[ v a r i a b l e s o u r c e ] ,

15 (SELECT node .∗
FROM [ parents ] AS node ,

[ l o c a l n o d e t a b l e ] AS local
18 WHERE ( [ where expre s s i on ] )

) AS node
WHERE ( [ hav ing expr e s s i on ] )

21 ) AS node
WHERE ( noderank <= [ rank count ] )
ORDER BY [ v a r i a b l e s ] , noderank

The HAVING joins and the RANKED sorts show where the costs of this
mapping come from. Their expense depends on the number of values per
FOREACH variable and on the total number of nodes available in the node
table. The declarative nature of the separate SLOSL clauses helps in making
tradeoffs. The visible dependencies between attributes and clauses allow to
parametrise and optimise the evaluation process, especially if multiple SLOSL

views are in use. Common Subexpression Elimination [Muc97], a well-known
technique in compiler optimisation, can be deployed to extract and precompute
common node attributes, expressions or sub-views of different views.

Also, note that the above template is unnecessarily redundant due to the
intent of providing a single statement. One redundant subexpression inside
the statement itself is the evaluation of the WHERE and HAVING expres-
sions against the source tables, which occurs a second time during RANKED
evaluation. Future work could investigate various optimisation strategies in
this context.
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8.2.2 Interpreting SLOSL

Where the SQL mapping leads to a rather heavyweight implementation, a
more promising approach for a SLOSL implementation is a dedicated interpreter,
which was also developed as part of this thesis. It is currently used in the SLOSL

Overlay Workbench to visualise topologies (see 8.1.3).
The interpreter is written in the Python language. It uses a generic se-

quential stream evaluation engine based on chained Python generators. The
evaluation process follows the step-by-step scheme presented in section 5.1.
For simplicity, the database is represented as a simple set of hash tables (or
dictionaries in Python terms) that map node identifiers to node objects. The
entire generic SLOSL infrastructure of database, views and node implementa-
tions is implemented in about 700 lines of code, of which the evaluation engine
itself occupies less than 200 lines.

The MathDOM XML library [Beh05a] is used to transform arithmetic ex-
pressions and boolean expressions of the different SLOSL clauses from platform
independent MathML into Python expressions. Their evaluation then deploys
the Python interpreter directly. MathDOM also originated from the work on
this thesis. It already supports a variety of target languages.

On a 1.6 GHz AMD64 machine, the simulator builds a static Chord network
of 128 nodes in a key space of 28 IDs in about 3.7 seconds. This includes the
database setup and involves 1,024 (8 ∗ 128) node evaluations in 128 views, i.e.
131,072 in total. According to profiling data, a single view evaluation takes less
than 2 milliseconds in these tests, a single bucket can therefore be evaluated
in about 0.25 milliseconds.

These numbers are already in an acceptable range for a deployed system
such as a current peer-to-peer overlay. Still, the interpreter uses a generic
evaluation engine without any further query optimisation techniques. Future
implementations of OverML will generate efficient overlay implementations
from specifications through a model transformation process. This will allow
the integration of SLOSL optimisers that tune the resulting code for the specific
SLOSL statements used.

8.3 OverML Model Transformation

The interpreter described above is helpful for testing and debugging envi-
ronments. In the long term, however, model transformation and source code
generation will become the preferred way of generating deployable overlay im-
plementations from OverML specifications.

In the context of model driven engineering (see also section 9.7.3 on related
work), model transformation denotes the transformation of a higher-level plat-
form independent model (PIM) into lower-level platform independent or plat-
form specific models (PSM). The generation of a PSM usually involves some
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form of source code generation for a (general purpose) programming language.
See also section 9.7.4 of the related work chapter. This section describes a
transformation of OverML to object oriented languages in multiple steps.

First, the OverML specification is transformed into a platform independent
XML object model by a language agnostic XSL transformation. Then, the
active database and its event-driven query execution paths are constructed.
In the last step, a language specific generator transforms this representation
into source code for a programming language.

This section describes the complete transformation process. However, the
current implementation does not cover it in its entirety. The platform inde-
pendent model transformations are available, but no SLOSL optimisers were
implemented and the platform specific source code generators stay at a very
preliminary level. The goal was not to provide a reference system, but rather
to make the architecture itself visible and accessible. It is the nature of a
Model Driven Architecture that different target environments require (or en-
courage) very specialised implementations. A single reference implementation
would be of limited help in this context.

8.3.1 Transforming OverML to an Object Model

In the first step, the four languages are transformed into a representation
suitable for creating object oriented source code. NALA types are used during
the transformation process to provide data type mappings into the target
language. NALA attributes are combined into a node class for the database.

SLOSL views become view objects with corresponding view node classes.
The clauses stay mainly unchanged, as their transformation depends mostly
on platform specific parameters such as the database implementation.

HIMDEL is expanded into separate message representations containing ob-
ject hierarchies of containers and headers. This step deploys the same trans-
formation as for building the field access paths (see section 6.4.1). The XSL
stylesheet for this transformation is provided in appendix A.6).

EDSL already represents state objects but still requires some transformation
for simplification. First, the EDSM graph is flattened to remove the subgraph
structures. Then, the transitions are moved into the corresponding source
states to honour their normal execution from within the active states.

EDGAR requires no further transformation, as it has a straight forward map-
ping to conditional statements in procedural code.

The transformations are done independently for each language. The only
exception is SLOSL, which depends on NALA for type inference. This transfor-
mation of SLOSL into view objects is a little more complex than for the other
languages. Appendix A.5 has the complete XSL template. The main part of
it follows:
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Listing 8.3: Main XSL Template for Object Representation of SLOSL

<xsl:template match=” s l o s l : s t a t emen t ”>
<xsl :variable name=” classname”>

<xsl:call−template name=” c a p i t a l i z e ”>
<xsl:with−param name=”name” s e l e c t=”@name”/>

5 </xsl:call−template>
</xsl :variable>

<c l a s s a c c e s s=” pub l i c ” name=”{ concat ($ classname , ’View ’ ) }” i n h e r i t s
=”View”>
<x s l : i f t e s t=” s l o s l : b u c k e t s [ @inher i t = ’ true ’ ] ”>

10 <xsl :attr ibute name=” i nh e r i t bu c k e t s ”>t rue</xsl :attr ibute>
</ x s l : i f>

<cons t ruc to r>
<param name=”views ”/>

15 <xsl:for−each s e l e c t=” s l o s l : p a r e n t ”>
<parent><xsl:value−of s e l e c t=” s t r i n g ( ) ”/></ parent>

</xsl:for−each>
<xsl:for−each s e l e c t=” s l o s l : w i t h [ math: ∗ ] ”>

<a s s i gn f i e l d=”{@name}”>
20 <xsl:apply−templates s e l e c t=”math:∗” mode=” copy−express ion ”

/>
</ a s s i gn>

</xsl:for−each>
</ cons t ruc to r>

25 <xsl:for−each s e l e c t=” s l o s l : w i t h ”>
<xsl :variable name=”option name”>

<xsl:call−template name=” c a p i t a l i z e ”>
<xsl:with−param name=”name” s e l e c t=”@name”/>

</xsl:call−template>
30 </xsl :variable>

<viewopt ion name=”{@name}”>
<xsl:apply−templates s e l e c t=”math:∗” mode=” copy−express ion ”/>

</ viewopt ion>
35 </xsl:for−each>

<c l a s s a c c e s s=” pr i va t e ” name=”ViewNode” extends=”Node”>
<cons t ruc to r>

<param name=”node”/>
40 <xsl:for−each s e l e c t=” s l o s l : b u c k e t s / s l o s l : f o r e a c h /@name”>

<x s l : s o r t s e l e c t=” s t r i n g ( ) ”/>
<param name=”{ s t r i n g ( ) }”/>

</xsl:for−each>
<xsl:apply−templates s e l e c t=” s l o s l : s e l e c t ” mode=”

c la s sgen−cons t ruc to r ”/>
45 </ cons t ruc to r>

<xsl:apply−templates s e l e c t=” s l o s l : s e l e c t ” mode=” c l a s s g en ”/>
</ c l a s s>

<method name=” s e l e c t n od e s ”>
50 <xsl:apply−templates s e l e c t=” s l o s l : wh e r e [ math: ∗ ] ”

mode=” copy−express ion ”/>
<xsl:apply−templates

s e l e c t=” s l o s l : b u c k e t s [ @inher i t != ’ true ’ and s l o s l : f o r e a c h ] ”
mode=” copy−express ion ”/>

55 <xsl:apply−templates s e l e c t=” s l o s l : h a v i n g [ math: ∗ ] ”
mode=” copy−express ion ”/>

<xsl:apply−templates s e l e c t=” s l o s l : r a n k e d [ s t r i n g ( @function ) ] ”
mode=” copy−express ion ”/>

</method>
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60 </ c l a s s>
</xsl:template>

Note the select nodes method at the end that basically copies the main
SLOSL clauses to the result. There is no further transformation done at this
point as implementations may have very different ways of handling the clauses.
Also, there are two distinct use cases of these clauses that frameworks will
likely implement differently. One is the computation of the complete view
content and the second is about efficient update propagation, as explained in
section 8.3.2.

When we apply the above template to the SLOSL statement that was pre-
sented for the Chord fingertable view in chapter 5, it outputs an XML result
like the following. For readability, some of the longer MathML expressions
were replaced by their shorter infix term equivalents.

Listing 8.4: Example for the Object Representation of a SLOSL Statement
<classes

xmlns=”http://www.dvs1.informatik.tu-darmstadt.de/research/OverML/codegen”
xm l n s : s l o s l=”http://www.dvs1.informatik.tu-darmstadt.de/research/OverML/slosl”
xmlns:m=”http://www.w3.org/1998/Math/MathML”>

5 <class ac c e s s=” pub l i c ” name=”ChordFingertableView” i n h e r i t s=”View”>
<constructor>

<param name=”views ”/>
<parent>db</ parent>
<assign f i e l d=” l og k ”>

10 <expression>
<m:math><m:cn type=” i n t e g e r ”>5</m:cn></m:math>

</expression>
</assign>

</constructor>
15

<viewoption name=” log k ”>
<expression>

<m:math><m:cn type=” i n t e g e r ”>5</m:cn></m:math>
</expression>

20 </viewoption>

<class ac c e s s=” pr i va t e ” name=”ViewNode” extends=”Node”>
<constructor>

<param name=”node”/>
25 <param name=” l ”/>

<assign f i e l d=” id ”>
<expression>

<depends type=” a t t r i bu t e ” na la type=” id256 ”>id</depends>
<m:math><m:ci>node . id</m:c i></m:math>

30 </expression>
</assign>
<assign f i e l d=” l o c a l c h o r d d i s t ”>

<expression>
<depends type=” a t t r i bu t e ” na la type=” id256 ”

35 > l o c a l c h o r d d i s t</depends>
<m:math><m:ci>node . l o c a l c h o r d d i s t</m:c i></m:math>

</expression>
</assign>

</constructor>
40 <nodeproperty name=” id ” na la type=” id256 ”/>

<nodeproperty name=” l o c a l c h o r d d i s t ” na la type=” id256 ”/>
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</ class>

<node selection>
45 <slosl:where>

<expression>
<depends type=” a t t r i bu t e ” na la type=”boolean ”

>a l i v e</depends>
<depends type=” a t t r i bu t e ” na la type=”boolean ”

50 >knows chord</depends>
< !−− MathML: n o d e . k n o w s c h o r d a n d n o d e . a l i v e −−>

</expression>
</ slosl:where>
<slosl :buckets i n h e r i t=” f a l s e ”>

55 <s los l : foreach name=” l ”>
<expression>

<depends type=” i d e n t i f i e r ”>l o g k</depends>
<m:math>

<m:interval c l o s u r e=” c losed−open”>
60 <m:cn type=” i n t e g e r ”>0</m:cn>

<m:ci>l o g k</m:c i>
</m:interval>

</m:math>
</expression>

65 </ s los l : foreach>
</ slosl :buckets>
<slosl :having>

<expression>
<depends type=” i d e n t i f i e r ”> l</depends>

70 <depends type=” a t t r i bu t e ” na la type=” id256 ”
> l o c a l c h o r d d i s t</depends>

< !−− MathML: n o d e . l o c a l c h o r d d i s t ∈ [2i, 2i+1) −−>
</expression>

</ slosl :having>
75 <slosl:ranked f unc t i on=” lowest ”>

<slosl:parameter>
<expression>

<m:math><m:cn type=” i n t e g e r ”>1</m:cn></m:math>
</expression>

80 </ slosl:parameter>
<slosl:parameter>

<expression>
<depends type=” a t t r i bu t e ” na la type=” id256 ”

> l o c a l c h o r d d i s t</depends>
85 <m:math><m:ci>node . l o c a l c h o r d d i s t</m:c i></m:math>

</expression>
</ slosl:parameter>

</ slosl:ranked>
</node selection>

90 </ class>
</ classes>

Once again, this extract is rather verbose (mainly due to the usage of
MathML), but it is only used as an intermediate result of the transformation
process and thus handed from one translator program to another. The list-
ing shows an object-oriented, but platform-independent representation of the
SLOSL view implementation. The expressions were annotated with dependency
information. This helps in type inference and simplifies the implementation of
language specific generators and optimisers.

As the example shows, each of the generated view objects has a specific
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ViewNode class associated with it. It represents the selection and calculation
of attributes specified by the SLOSL SELECT clause.

Normally, node objects of views are read-only. The reason is that node
attributes of views can be calculated in SELECT expressions on their way
from the database. There is not necessarily an inverse to that expression (or
function), so attribute writes cannot always be propagated to the database.
Attributes must therefore be updated directly in the database.

8.3.2 Efficient Event-driven SLOSL View Updates

One of the major goals of SLOSL and the Node Views architecture is to support
the efficient integration of multiple overlays. The shared database provides the
main foundation for this integration through locally consistent views. How-
ever, the local evaluation of these views allows for further integration that can
substantially increase the run-time performance.

The execution of SLOSL statements is naturally event-driven. When har-
vesters update attributes and add or discard nodes, the architecture must
determine which views are affected and reevaluate them, both to provide con-
sistent views to controllers and routers, and to generate the related view events.
The naive way of independently evaluating all of them can quickly become ex-
haustive, as it depends on the number of locally known nodes, the deployed
views and their bucket size.

SLOSL, however, is a declarative language that provides high-level semantics.
Its evaluation can be implemented in different ways, depending on the require-
ments. Chapter 5 already presented a number of example statements and the
reader may have noticed that there is a certain overlap between them. They
all rely on an id attribute, for example, but otherwise differ in their specific
dependencies. They all deploy a similar WHERE clause. These redundancies
and particularities can be exploited to further integrate their evaluation and
to minimise the impact of changes in the database.

SLOSL provides two main features that help in integrating views. First of all,
it provides separate clauses for semantically different parts of a specification.
This allows to extract overlapping expressions that follow the same semantics
and to pre-calculate them for use in different views. Secondly, it makes it
easy to determine the dependencies between node attributes and single clauses
of views. They follow from the attributes and bucket variables used in the
expressions of SLOSL statements and allow to select a minimum set of views
(and clauses) for evaluation when attributes change. Note also that some of
these attributes are usually declared by NALA as identifiers or otherwise static
data, which allows to drop their update dependencies from the implementation.

As a result, the run-time performance of the locally running software in a
SLOSL implemented system is directly linked to the preparation of an efficient
multi-statement query execution plan at compile time. A SLOSL optimiser will
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Figure 8.5: Example of an Attribute Dependency Graph for Multiple Views

therefore start by building a dependency graph like in figure 8.5. It states
which attributes each view depends on. Only the dependent views have to be
re-evaluated on updates.

The next step is to open up the view declarations and to split them into
their different clauses. We can then build an extended dependency graph for
the clauses of each view, as in figure 8.6. As in the previous examples, different
clauses do not necessarily depend on the same attributes. If an attribute
changes, it can therefore not affect independent clauses. However, the clauses
may also provide their own dependencies. While the WHERE clause can only
depend on the parents of the view (FROM) and on view options (WITH), the
RANKED expression may depend on bucket variables, i.e. the FOREACH and
HAVING clauses. The dependency graph is therefore needed to determine an
efficient execution plan.

For example, a change to attribute 1 would enforce a reevaluation of the
WHERE clause for the respective node. If that succeeds, evaluating the
HAVING–FOREACH clauses will tell us into which buckets the respective
node belongs so that we can re-run the ranking only for these. Storing the
information if a node is already part of a view or caching the previous result of
the boolean WHERE expression can even prevent the further view evaluation

DB Node
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Attribute 3

Attribute 2

Attribute 1

. . .

. . .
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WHERE

HAVING

RANKED

FOREACH

WITH

Figure 8.6: Example of an Attribute Dependency Graph between SLOSL Clauses
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Figure 8.7: Example of a merged Attribute Dependency Graph with an addi-
tional dependent attribute in the database

entirely if the result of the WHERE clause stays unchanged. The same applies
to the second attribute in the figure. Its update enforces the evaluation of the
RANKED expression only if the WHERE clause succeeds or changes.

As mentioned before, independent expressions (even partial expressions)
become candidates for pre-evaluation. Their results can be stored in the
database as dependent attributes (see 6.1). The previously presented exam-
ples all allow for pre-evaluation of the ranking expression, as the additional
attribute in figure 8.7 illustrates. Another possible pre-evaluation can occur
when updating multiple views. Common clauses, subexpressions or evaluation
steps can be extracted from the specifications, merged and executed in a dif-
ferent order. This reduces the redundancy between views and therefore the
cost of updating them. Figure 8.7 shows an example where the evaluation of
clauses and subexpressions was partially merged between views.

In SLOSL implemented overlay software, the detailedness of the dependency
graph and the application of possible optimisation techniques are the two main
factors for the efficient execution of local decisions. The best strategies can
be determined at compile time or deployment time, so that the cost of finding
them does not effect the run time performance. SLOSL optimisers will therefore
be able to generate optimal evaluation plans for each specific update event
used in a model and source code generators can build efficient execution paths
from each of them.

The semantics of SLOSL allow for various other approaches. Optimisers may
decide to deploy indexes on certain subexpressions. The bucket structure can
be layed out and tested for holes and overlaps. This allows to see if nodes are
uniquely mapped to buckets, in which case hashing or indexing become very
efficient evaluation strategies for the HAVING–FOREACH clauses.

Different frameworks can take their place within the range of optimisa-
tions between additional storage for pre-calculated results, hashing, indexing
and linear scans. They can trade the compile time overhead against the com-
plexity and performance of the resulting implementation. It is an important
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achievement of the SLOSL language to move these tradeoffs into configurations
and parametrisations of frameworks and model transformations, away from
source code implementations of each single overlay system. Profiling one over-
lay implementation can thus yield new optimisations that all other SLOSL im-
plemented overlays can immediately benefit from.

8.3.3 Transforming the OverML Object Model to Source
Code

The generation of source code is obviously a very platform specific transfor-
mation. It completely depends on the specific framework and programming
language. However, the object representation that was generated so far al-
lows for a rather straight forward mapping to object oriented languages like
Java, C++ or Python. The following describes the generic infrastructure that
frameworks must provide and names possible mappings from the generated
object representation of the OverML languages to framework specific imple-
mentations.

HIMDEL requires framework support for message serialization and a map-
ping to language specific data types. Both were briefly discussed in 6.4.2.

EDSL requires the implementation of a generic event-driven state machine.
It must support message based networking (see HIMDEL above) and event pass-
ing between state components. This infrastructure is often implemented on
top of variants of the select or poll system calls [Ste03] for Unix operating
systems. Several programming languages and virtual machines provide similar
capabilities, for example the NIO package for the Java virtual machine [R+02].

Event passing between states is commonly implemented via an indirection
through the framework. This is needed to support the non-blocking I/O of the
above system calls. A convenient side effect is the decoupling of states, which,
in combination with EDSL generated glue code, leads to decoupled components.

Many higher-level frameworks already exist that implement the majority of
features required by EDSL. Examples are the Staged Event Driven Architecture
for the Java virtual machine (see 3.2.1) or the Twisted framework for the
Python language3. The remaining layer needed to support EDSL source code
generation for these frameworks is rather thin, as EDSL was designed with very
simple, generic abstractions.

Another interesting target environment for EDSL is the Gridkit [GCB+04,
GCBP05] (see 8.4). Its component environment, OpenCOM [CBG+04], is
designed for run-time reconfiguration. The state interfaces defined by EDSL

can be mapped to glue code for OpenCOM components. Such an environment
lifts the restrictions of static design-time protocols and allows for run-time
software adaptation at the component layer.

3http://www.twistedmatrix.com/

http://www.twistedmatrix.com/
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EDGAR is a rather simple language. It is easily transformed into condi-
tional statements in any general-purpose programming language. Only the
exclude last element requires additional information about node identifiers de-
fined in NALA.

NALA defines a data schema for a local data storage point, which may be
represented as a database or a local object store or in any other form that
seems appropriate. This requires a platform specific component that is con-
figurable by NALA or a transformed representation (e.g. an SQL table creation
statement). The second requirement is a mapping from NALA types to plat-
form specific data types. Today, most platforms can handle SQL data types
directly, but more specialised mappings will likely yield better performance.

Explicitly typed languages, like C or Java, use type declarations and casts
in the generated source code. NALA provides the required type information
only for the node database. Model transformers must then infer the types
of node attributes in views from their dependencies on expressions in the re-
spective SLOSL statements. This step involves common algorithms known from
compilers and query engines. However, it depends partially on language spe-
cific semantics of expression evaluation, which makes it a platform specific
transformation.

SLOSL describes the evaluation of views and their updates. There are differ-
ent ways to implement views, depending on the database infrastructure. This
can be as simple as a linear scan through a list of nodes followed by a sorting
step to rank the nodes, or it can deploy materialised views and incremental
updates. The possible implementations are as diverse as the target platforms.
The first implementation of a SLOSL evaluator is part of the interpreter de-
scribed in section 8.2.2.

First steps towards a SLOSL optimiser were described in section 8.3.2. Fu-
ture implementations of OverML in different target environments will help to
identify and improve platform independent optimisations, that can then be-
come part of the model transformation process. One promising candidate for
such a target environment is the Gridkit overlay framework.

8.4 OverGrid: OverML on the Gridkit

In joint work with Paul Grace at the University of Lancaster, the author
developed a scheme [BBG+06] for implementing OverML support in the Grid-
kit. Gridkit [GCB+04, GCBP05] is a cross-cutting middleware for overlay
deployment. Based on the dynamic OpenCOM component model [CBG+04],
it provides abstractions and interfaces for layering various kinds of overlays
and interaction paradigms on top of each other, as illustrated in figure 8.8.
Its main intention is to provide layered networking and service components
that allow the middleware to support any environment from sensor or ad-hoc
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Figure 8.8: The per-node Gridkit software framework

networks to Internet-scale applications through simple reconfiguration at the
component level.

The Gridkit architecture is based on two forms of layering: vertical lay-
ers for network protocols, overlays and middleware services, and a horizontal
separation of concern between forward, control and state components within
each overlay layer. The control element cooperates with its peers on other
hosts to build and maintain the virtual network topology. The forwarding
element appropriately routes messages over this topology. The state element
then keeps per-overlay node state such as a next-neighbours list. This al-
lows for a sufficiently fine-grained decomposition to freely stack the resulting
implementations into runnable systems.

In Gridkit, the state component is specific to the overlay, and communicates
through an overlay specific state interface within its horizontal layer. The
control and forwarding components implement the common interfaces IControl
and IForward listed below. They allow for vertical stacking of the overlay
layers. The control operations are: Create a specified overlay, Join an overlay
or Leave an overlay. The forward operations are: Send forwards messages to
an identified destination, Receive blocks awaiting messages from the overlay,
and EventReceive does the same in a non-blocking style.

1 interface IContro l {
2 ResultCode Create (String netId , Object params ) ;
3 ResultCode Join (String netId , Object params ) ;
4 ResultCode Leave (String netId ) ;
5 }
6 interface IForward {
7 public byte [ ] Send (String destID , byte [ ] msg , int param ) ;
8 public byte [ ] Rece ive (String netId ) ;
9 public void EventReceive (String netId , IDeliver evHandler ) ;

10 }

According to the developers of Gridkit, this clean split is hard to achieve
in practice for source code implementations. There are certain cross-cutting
concerns, like the routing algorithm, that create hard interdependencies be-
tween the components. Note also that the state component is overlay specific
and therefore closely tied to the implementation.

Table 8.1, provided by Paul Grace, sums up the lines of code and man days
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required for implementing various systems and layers, while trying to adhere
to the necessary separation of concerns. It becomes clear that even within an
infrastructure like Gridkit, and even for well-known overlays, the source code
implementation of these systems is hard work, including reverse engineering
of existing systems and source level debugging of the new implementation.

Overlay Type LoC Man Days
Chord Key-based Routing [SMK+01] 790 42
Chord-based Distributed Hash Table [SMK+01] 570 35
Scribe[RKCD01] 880 42
Tree-Building Control Protocol [MCH01] 736 35
SCAMP [GKM01] 1000 35
Minimum Spanning Tree 1300 20
Gossip-based Failure Monitor [vRMH98] 450 28

Table 8.1: Source code implementation of well-known overlays in Gridkit: lines
of code and effort involved

The work presented in this thesis was found to be very much complemen-
tary to the Gridkit. The Node Views approach aims to simplify the design and
implementation of overlays through high-level, platform-independent models.
It further helps in decoupling generic components within overlay implementa-
tions and provides an integrative data layer as their basis. The languages EDSL

and EDGAR and the generally Model-View-Controller based design allow for an
easy mapping to the state-forward-control separation of the Gridkit.

Physical Networks
Ethernet, IP, WiFi, MANET, ...

Communication Abstractions
TCP, UDP, Broadcast, ...

DB

Overlay Networking Stack
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ForwardingSLOSL Views

Controllers

ForwardingSLOSL Views
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Figure 8.9: Combined architecture of Gridkit and Node Views

Figure 8.9 illustrates a combined architecture of OverML and Gridkit,
named OverGrid. The vertical interfaces and the basic controllers are provided
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by Gridkit, the underlying reconfiguration architecture deploys OpenCOM,
and the horizontally arranged components in the overlay stack are modelled,
integrated and configured using the Node Views architecture and the OverML
languages. The introduction of a database and views simplifies the separation
of the control and forwarding components, that was previously found hard to
achieve in Gridkit.

The main idea is to use OverML for the platform-independent design of
overlay topologies, routing strategies etc., and then generate very specialised
Gridkit components and OpenCOM glue code from the model. We will now
briefly overview major parts of the infrastructure that OverML requires in
Gridkit: database and views, control and forwarding components, and event
handling.

8.4.1 Database and SLOSL Views

OverGrid replaces the individual overlay state components in Gridkit overlays
with a generic database exposing views to the control and forwarder compo-
nents. Hence, the number of executing components is reduced, and state is
more easily shared across overlay implementations. This obviously requires
a platform specific SLOSL infrastructure in Gridkit, namely a database and a
view evaluator. Both of them are parametrised by the OverML models. The
node attribute language (NALA) describes the data schema and SLOSL describes
the evaluation of nodes and node attributes into views (or sets of nodes).

Depending on the capabilities of the target environment, the database can
be anything from a simple hash table of nodes to an object-relational database.
This allows for a tradeoff between the run-time performance, the complexity
of the static infrastructure and that of the code generation process. Grid-
kit can easily support different implementations and select between them at
deployment time.

8.4.2 Control

Control components are generated mainly from the SLOSL and EDSL models.
The resulting event graph implementation is wrapped in an OpenCOM com-
ponent that implements the IControl interface and interacts with the database
through the modelled views.

Currently, Gridkit provides general, re-usable overlay control components
(termed generic controllers in Gridkit or harvesters in Node Views), that pro-
vide repair and backup strategies for overlays [PC06]. These can be remodelled
using EDSL to make their internal structure visible at the model level and sub-
ject to adaptation in OverGrid. A number of other possible harvester schemes
are presented in chapter 7.
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8.4.3 Forwarding

Forwarding is entirely driven by code generation. EDGAR is easily mapped to
conditions in source code. SLOSL views, however, require the decision code
to be executed in a SLOSL infrastructure or by code generated for SLOSL. As
described in section 5.4, this is mainly identical to normal SLOSL evaluation
and thus integrates with the database implementation. OverGrid wraps the
generated code within an individual OpenCOM component that implements
the IForward interface, and binds to the required views.

8.4.4 Event Infrastructure

EDSL describes the component interaction in terms of events. Implementa-
tions will commonly use a generic event-driven state machine engine. It can
either interpret the EDSL graph directly or can be specialised by OverML code
generators. Such a specialisation can be the generation of unique event IDs
that speed up the dispatching process. It can also mean the generation of
specific event objects that are forwarded between states, or of event specific
handler code. The exact implementation depends on the constrains of the
target environment and the effort required for the specialisation of the code
generators.

8.4.5 Network Layers

As the FROM clause in SLOSL supports views of views, it can describe a layering
of topologies that maps directly to layers in Gridkit as in figure 8.9. In combi-
nation with EDSL event flow graphs (and its component subgraphs), this nicely
describes the event flow through the network layers and the dependencies of
local decisions in one overlay layer on overlays in lower layers.

8.5 OverGrid Case Study: Scribe over Chord

This section describes a case study of designing a complex overlay implemen-
tation with OverGrid. It starts by specifying the overlay using the SLOSL Over-
lay Workbench and then maps the resulting OverML specification to Gridkit
components. This simple walk-through does not honour the fact that design
usually evolves incrementally. The real-world design process would normally
follow edit-compile-test and edit-compile-deploy cycles. For clarity, this sec-
tion only presents the design steps in summaries. Note, however, that the
support for incremental design is a major advantage of the high-level Node
Views architecture.
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8.5.1 Node Attributes for Scribe/Chord

The first step in the design process is to provide a database schema, expressed
as node attributes in NALA. Chord nodes require logical IDs, which are essen-
tially large integers. We define them as having 256 bits. We will see further
down that the SLOSL views for Chord and Scribe require the following addi-
tional attributes:

ring dist is a dependent attribute based on the id attribute. It contains
the locally calculated ring distance towards a node based on the Chord
metric.

supports chord is a boolean flag that states whether a node is known to
support the Chord protocol.

alive is a boolean flag that is only true for live nodes.

triggered is a boolean attribute. It is set to true when the node did not
respond to a message and is considered to be “possibly no longer alive”.
Another way of specifying this would be a bounded counter for failed
communication attempts (i.e. outgoing messages).

subscribed groups is a set of group identifiers (256 bit IDs) that a node is
known to be subscribed to in Scribe.

8.5.2 SLOSL Implemented Chord Topology

Chord [SMK+01] deploys two different views: the finger table defines the major
performance characteristics of its topology and the neighbour set keeps the
predecessor and successor along the ring to assure correctness. As seen in
section 5.1, SLOSL implements the finger table as follows.

1 CREATE VIEW cho rd f i n g e r t a b l e
2 AS SELECT node . id , node . r i n g d i s t , chord bucket=i
3 FROM node db
4 WITH log k = log ( |K |)
5 WHERE node . support s chord = true AND node . a l i v e = true
6 HAVING node . r i n g d i s t in [ 2i , 2i+1 )
7 FOREACH i IN [ 0 , l o g k )
8 RANKED lowest (1 , node . r i n g d i s t )

The neighbour set implementation contains the node with the lowest node
ID further along the ring (the successor) and the node with the highest node
ID backwards on the ring (the predecessor). For resilience reasons, the view
specified below stores a larger number of nodes, as encouraged by the original
Chord paper.

1 CREATE VIEW c i r c l e n e i g hb ou r s
2 AS SELECT node . id , s i d e=s i gn
3 FROM node db
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4 WITH ncount=10, max id=|K | − 1
5 WHERE node . a l i v e = true
6 HAVING abs ( node . id − l o c a l . id ) <= max id / 2
7 AND s ign ∗( node . id − l o c a l . id ) < 0
8 OR abs ( node . id − l o c a l . id ) > max id / 2
9 AND s ign ∗( node . id − l o c a l . id ) > 0

10 FOREACH s ign IN {−1 ,1}
11 RANKED lowest ( ncount , node . r i n g d i s t )

8.5.3 Chord Routing through SLOSL Views

[ for me? ]

first match

finger
table

neighbour
sethandle error or drop

handle locally

Figure 8.10: EDGAR Graph for Chord Routing through SLOSL Views

The routing decision graph for Chord is shown in figure 8.10. As generally
described for EDGAR in section 6.3, messages are pushed through the tree from
the left and traverse it in depth-first pre-order. Chord generally decides re-
sponsibility for messages through the finger table view, but it can always fall
back to using the circle neighbours if that fails.

8.5.4 SLOSL Implemented Scribe on Chord

The Scribe [RKCD01] multicast scheme requires an additional view for routing
publications. It forwards them towards the rendezvous node of the respective
group and at each hop along the path broadcasts it to all subscribed children.
Forwarding towards the rendezvous simply deploys Chord routing, but the
broadcast requires an additional view on top of the Chord topology that selects
only subscribed neighbours.

The selection is based on the active subscriptions of nodes in the finger ta-
ble. All locally active subscriptions are given by the well defined set containing
the subscriptions of the local node or its children towards the parents. It in-
cludes the group IDs for which the local node is the rendezvous node and for
which children or the local node are subscribed. The Scribe implementation
requires a view for each of the locally active groups as follows.

1 CREATE VIEW s c r i b e s u b s c r i b e d c h i l d r e n
2 AS SELECT node . id
3 FROM cho rd f i n g e r t a b l e
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4 WITH sub
5 WHERE sub in node . subsc r ibed groups

8.5.5 Multicast Routing through SLOSL Views

[ am I rendezvous? ]

[ am I su
bscribed? ]

exclude last

first matchfork

fork

subscribed
fingers

forward (Chord)

handle locally

Figure 8.11: EDGAR Graph for Multicast Routing through SLOSL Views

The routing decision graph for Scribe publications on Chord is shown in
figure 8.11. Along the path, the execution is forked into different branches,
which treat the message independently for local subscriptions, neighbour sub-
scriptions, and forwarding to the rendezvous node using the lower-level router
(Chord in this case). The “exclude last” property prevents the last hop of a
received message from appearing amongst the selection of next hops further
down the tree.

8.5.6 Message Specifications in HIMDEL

Instead of using the verbose XML representation of HIMDEL, the specification
is presented in a shorter form here. The names in brackets are the access
names used for accessing fields and structure of messages. Remember that the
programmatic interface of messages also defines a last hop field (if it is known)
and a next hop field (if it was determined by a router). For transmission,
OverGrid uses a binary format as described in section 6.4.2.

• Header [chord]

• Container [ids]

• id [sender]
• id [receiver]

• Message [chord joined]

• Message [chord find successor]

• Message [chord find predecessor]

• Message [chord notify]

• Message [chord update fingertable]

• View-Data [finger table bucket] → chord fingertable/bucket

• Header [scribe]
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• Message [scribe create rendezvous]
• Message [scribe join]
• Message [scribe leave]
• Message [scribe publish]

• Data [event]

8.5.7 Event Handling in EDSL

This is the main part where Gridkit integrates with the code generation pro-
cess. Gridkit components implement the controllers that are connected by
the EDSL graph specification. Again for clarity, this section does not describe
the entire protocol graph of Scribe on Chord that implements the IControl
component. It rather presents an example event processing cycle that shows
how the system responds to events in a non-trivial way. The leave process
in Scribe, which implements the propagation of unsubscriptions from groups,
is a good example for this purpose. The complete process is presented in
figure 8.12. The vertices are EDSL states (Gridkit implemented controllers),
solid lines represent EDSL transitions and dashed lines represent programmatic
actions of controllers, that are not covered by EDSL.

incoming
messages

handle
leave

scribe_leave[ids.receiver]

database

remove ID from
msg.last_hop.subscribed_groups

local
leave

remove group from
local.subscribed_groups

component that
sends message

Got ACK
(ignore)

ACK

ACK handler to
check triggered/alive

timeout (3 sec)

ping

switch
alive

switch
triggered

unsubscribe

subscription view empty

Figure 8.12: Event processing for explicit and implicit leaves in Scribe

There are three cases in Scribe that trigger a leave. The first one is the local
leave that unsubscribes the local node. The second one is the explicit leave
where a neighbour sends an unsubscribe message for a group. The third one
is the implicit leave where the local node loses the connection to a subscribed
neighbour. The first two cases are mainly identical in handling, the implicit
one requires additional logic to decide that a leave must be triggered.

In this case, any component that sends messages and expects some kind
of acknowledgement for them has two transitions coming out of it: one for
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receiving the ACK and one for a timeout. Only one of them will ever be
triggered, so whatever comes first will determine the further execution path.

If the ACK is received first, all is fine. If, however, the timeout comes first,
it triggers the destination state of the timeout, which is a generic ACK handler
controller. This controller looks up the next hop in the respective message and
switches its triggered attribute through the database API. If it becomes true,
the controller triggers the node by sending it a ping and then terminates. The
same controller will handle the timeout of this ping. If, however, the attribute
was true already and becomes false now, the controller sets the alive attribute
of that node to false. These changes will trigger events from the database. In
our example, the update event of the triggered attribute is not used, but all
SLOSL views must be updated for the alive event.

For simplicity, we will assume that the node was only contained in the
finger table view and has open subscriptions in the Scribe subscriptions view.
Containment can be decided in different ways depending on the database and
view implementations. If materialised views are used (which may be the sim-
plest implementation anyway), it is easy to check if a node is visible in a view.
Otherwise, the view has to be evaluated for the node, once with the original
attributes and once with the modified attributes, to determine a change. If
the node update did not impact the view content, no view update is needed
and no events are generated. Note that the SLOSL statements in an OverML
specification provide all semantics necessary to determine efficient evaluation
plans at compilation time.

In our example, we assumed that the node was contained in the finger table.
It will therefore disappear from the view after the alive update. This triggers
the event that the node left the finger table view. The same will happen for
the scribe subscribed children views that inherit from the finger table. Our
current Chord implementation can ignore these events, as its routers only use
the consistently updated views and therefore do not require any notifications
about updates. Similarly, the Scribe implementation can ignore them as long
as there are nodes left in all subscription views. Therefore, in the simplest
case, event handling ends just here.

In the case where the failed node was the only subscriber for a group,
however, Scribe has to unsubscribe from that group. This is done through
the view empty event that is triggered whenever a view update leaves the
view empty. Note that the same event is triggered when a controller receives
an explicit unsubscription from the last subscribed neighbour in a group and
deletes the group ID from its subscribed groups attribute. This will delete the
last node from the subscription view of that group and thus trigger the event.

The view empty event of subscription views is therefore connected to an
unsubscribe state in the EDSL implementation of Scribe. For each event, it sends
out an unsubscribe message towards the rendezvous node of the respective
group by using the underlying chord router.
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8.5.8 From Specification to Deployment

Once the major characteristics of the overlay stack are defined, we can make
the system runnable step by step. We start by running tests within the work-
bench. The SLOSL visualiser (see 8.1.3) allows the developer to play with simple
scenarios. This helps in finding topological problems in the specification before
starting to work on the controllers.

Since the router components are generated completely based on SLOSL and
EDGAR, the main portion that remains to be implemented is the logic behind
the IControl interface. It is internally structured by the EDSL graph. At the
beginning of the coding step, it is helpful to use dummies for controllers that
are not yet implemented. Their interfaces are defined by their EDSL interac-
tion, so this is simple to do in code generators. Also, as figure 8.12 suggests,
controllers generally tend to be very simple and small, which allows for pre-
defined tool sets of components and quick-and-dirty stub implementations to
get the system working. From the EDSL graph, it is immediately clear which
components are required to make a specific portion of the protocols work.

The following steps obviously depend on the available tool support. Envi-
ronments for testing, debugging and simulating overlay implementations are
not yet available for the OverGrid architecture. Its main achievements in this
area, however, are the rich semantics that become available to debuggers and
the possibility to write these tools for generic OverML models and the generic
Gridkit/OpenCOM component architecture. Once available, these developer
tools will not require any adaptation to the specific overlay implementations.
Current overlay simulators are very much focused on specific requirements of
the specific overlays they were written for. OverGrid implemented overlays,
on the other hand, will seamlessly move between different OverGrid compat-
ible simulators, visualisers, debuggers and deployment environments without
major redesign or rewrites. Throughout the testing phase, the designer will
be free to go back to the design phase, modify the models and regenerate the
overlay implementation.

The main difference between environments for testing, simulation and dif-
ferent deployment scenarios is the Gridkit configuration. Different networking
stacks (starting with the physical protocols), different IControl components,
different subgraphs in the EDSL model and different controller implementations
can be used to adapt the system to the current environment at an arbitrary
granularity. Due to the OpenCOM component model, all of this can be con-
figured at deployment time.
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Related work exists in a number of areas. First of all, there is a considerable
amount of peer-to-peer systems and overlay systems that were proposed and/or
implemented. Some of these were already mentioned in the previous chapters,
especially in 2.3. A broader overview is given in 9.1 and 9.2. Section 9.3 refers
to evaluation studies that compare these systems.

There are two major books that provide a broad overview of the area
of overlay networks and peer-to-peer systems. The popular book edited by
Andrew Oram in 2001 [Ora01] provides a collection of articles written by a va-
riety of well known people, both from research and industry. The second book,
edited by Steinmetz and Wehrle in 2005 [SW05], contains a newer collection
of more research oriented articles. The overall breadth of the collection pro-
vides a well readable overview of various research directions and an excellent
foundation for future work.

One of the intentions behind this thesis was the integration of different
overlay networks. Such an integrative approach must prevent exhaustive re-
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source usage when maintaining multiple overlays on top of a single physical
network. Related work in this area is presented in section 9.4.

Section 3.2 provided an overview of previous approaches in the area of
frameworks and middleware systems for the design of these overlay networks.
Further systems and other areas of network and topology design are presented
in section 9.5. The general Software Engineering approaches that underly the
Model Driven Architecture and CASE tools are briefly overviewed in 9.7.

9.1 Unstructured Overlay Networks

The field of overlay networks is commonly divided into unstructured and struc-
tured networks. There is, however, a substantial number of hybrid approaches
and those that reduce the unstructuredness to achieve certain characteristics,
so the differences are steadily diminishing since their first distinction.

Structured or Key-based Routing networks, as described in 9.2, explicitly
target a well defined topology that is actively maintained by each participant.
Unstructured networks, on the other hand, do not actively maintain a spe-
cific topology. Their properties rather result from the use patterns in their
deployment.

9.1.1 Power-law Networks

Most unstructured overlay networks form Power-law topologies, also known
as Small-World Graphs [Mil67, WS98]. The oldest and most well-known of
them was the original Gnutella1. Their random nature provides relatively
high resilience combined with a small network diameter, which has also been
popularised as the six degrees of separation2.

The currently deployed overlays are commonly used for file sharing and
decentralised keyword search. Their main advantage is that potentially large
documents are statically stored on the source nodes, so that only the small
queries need to traverse the network. However, due to their size, complete
coverage is extremely expensive. Hence, these systems do not provide any
guarantees regarding consistency or availability of data, since queries may not
be forwarded to all potential sources and nodes may fail arbitrarily.

Evaluations of Gnutella have shown that its random nature makes it highly
resilient against random failures [SGG02]. This was found by crawling a live
Gnutella network of about 1800 nodes. If the simulated failures are targeted,
however, the authors find that it is sufficient to destroy only the most highly
connected 4% of the nodes to leave the graph disconnected. A visualisation of

1http://en.wikipedia.org/w/index.php?title=Gnutella&oldid=72696718
2http://en.wikipedia.org/w/index.php?title=Small world phenomenon&oldid=

72567335

http://en.wikipedia.org/w/index.php?title=Gnutella&oldid=72696718
http://en.wikipedia.org/w/index.php?title=Small_world_phenomenon&oldid=72567335
http://en.wikipedia.org/w/index.php?title=Small_world_phenomenon&oldid=72567335
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Figure 9.1: Resilience of a Gnutella graph: topology as found by crawler (left),
connected after 30% random failures (middle), disconnected after 4% targeted
failures (right). Source: [SGG02] (authorised)

these finding is presented in figure 9.1. This fraction obviously depends on the
total number of nodes and the distribution of out degrees, so the resilience can
be expected to grow with the network. However, this still shows that it is worth
putting consideration into the selection of neighbours and the maintenance of
the overlay, even if the general topology is randomised.

There were a number of proposals for semantic grouping in unstructured
networks, including [Jos02, NS02, BLZK04]. Their advantage is the topological
vicinity of related documents, which simplifies searches. However, one of the
problems here is the definition of semantic vicinity. These systems require
the availability of meta data, which in turn may require global knowledge of
document properties or larger data exchanges between random nodes. This
can be a substantial barrier for newly joining nodes.

A number of other approaches were proposed to improve the search char-
acteristics of early unstructured networks. Chawathe etal. [CRB+03] evaluate
a number of proposals and finally describe Gia, a system based on Gnutella
that combines the most promising tweaks.

Such an approach is substantially more promising than the implementation
of keyword search on top of Distributed Hash Tables as in [LLH+03] (see 9.2).
Due to their hash table nature, these systems must rely on distributed joins
of potentially large data sets as well as global knowledge about the available
documents, e.g. to compute the Inverse Document Frequency (IDF) as known
from Information Retrieval. This intuition was also expressed in [CRB+03].

A hybrid solution is presented in [LHSH04]. The authors combine the
rather exhaustive search capabilities of unstructured networks with the lookup
semantics of Distributed Hash Tables. This enables broad searches for well
replicated data as well as lookups of rare (and therefore indexable) data.

9.1.2 Square-root Networks

While power-law topologies mimic a common pattern found in various forms
of networks (including social networking), networks and replication schemes
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based on square-root characteristics were found to exhibit substantially better
search capabilities [CS02]. As part of the work on this thesis, a routing scheme
over structured overlay networks was developed [TBF+04]. It is called the Bit
Zipper Rendezvous and briefly described in section 2.3.6.

Kelips [GBL+03] represents a variation of unstructured overlays. The par-
ticipants are split into k groups (called affinity groups). Each node must
connect to some (or all) nodes in its own group and a small number of nodes
in each other group. Data is eventually replicated within the group of the
source node by epidemic communication. The authors determine k =

√
N as

a reasonable and efficient number of groups. However, the problem of estimat-
ing N or

√
N without global knowledge is not touched. Similarly, a balanced

distribution of nodes over all groups may turn out to be hard to achieve and
to maintain.

Another example for an unstructured implementation was recently pre-
sented in [Coo05]. The author proposes a highly connected topology where
each node keeps O(

√
N) neighbours, based on a local estimate. The resulting

network shows significantly better search performance than power-law topolo-
gies and proves to be optimal for random walk searches.

All of these systems give interesting evidence that square-root topologies
provide a number of interesting performance characteristics. Their application
can make peer-to-peer search systems generally more efficient.

9.2 Key-Based Routing (KBR) Networks

Key-Based Routing networks form a very interesting class of overlays. Since
scalable distributed data structures were initially proposed by Litwin and oth-
ers [LNS93, KLR96], a large number of different systems has emerged that has
seen a substantial growth since the year 2000.

9.2.1 Key-Based Routing

The general idea is as simple as hashing: Given a logical identifier (or key),
lookup the node that is responsible for it. The problems, however, are man-
ifold. How do we efficiently map identifiers to nodes? How do we assure a
reasonable load distribution without sacrificing the lookup efficiency? How
can we assure availability in the face of node failures? This section describes
the general approach of KBR systems.

Routing and Responsibility

The main characteristic of all KBR networks is the imposition of a topology
that is maintained by a distributed, decentralised algorithm. The topology
distributes a large, numeric key space K (commonly 2128 to 2256 keys) over
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all of the participating N nodes. Each node is therefore assigned the respon-
sibility for a subset of this key space. It then maintains its range jointly with
a small set of neighbours.

In KBR networks, routing is equivalent to the distributed evaluation of the
responsibility function. If a certain key is to be found, the topology is traversed
to determine the node that is responsible for the respective range. Normally,
one node is responsible for many keys, but each key is uniquely assigned to
one node.

The various KBR systems differ in their responsibility function, i.e. in the
way they assign responsibility ranges to nodes. Most of them use key prefixes
for the distribution and then route messages based on the Euclidean distance
towards the target range. Other possible metrics include the XOR distance
between two keys, like in Kademlia [MM02].

Neighbours and Out-Degrees

Overlay networks mainly differ in their topology, which determines the re-
quired out-degree of each node, the freedom in the choice of its neighbours,
the resilience against node or edge failures, the overhead required for topology
maintenance, etc.

As described in 4.1.1, topologies commonly divide the connections of their
nodes into different categories. Many KBR overlays provide some form of
”short” and ”long” connections. The long ones provide faster shortcuts through
the topology and the short ones assure its correctness. Direct neighbours must
know about each other and must keep up short connections to assure the cor-
rectness of responsibility assignments in their area. The long connections help
in traversing long paths through the topology and commonly cut down the
diameter to logarithmic depth. Most networks also let the number of outgoing
connections depend on the total number of nodes in the network, for both short
and long connections. This number is commonly proportional to log N , which
provides for reasonable resilience against arbitrary node failures [SMK+01].

9.2.2 LH* family of Scalable Distributed Data Structures

The LH* [LNS93, KLR96] family of distributed linear hash functions are the
oldest representatives of KBR-like systems. They were originally proposed by
Litwin and others as a distributed computing equivalent to Linear Hashing.
Since then, they have seen modifications to support a number of features for
enhanced resilience, such as replication and erasure coding.

Linear Hashing deploys a set of hash functions to handle collisions and
rescaling of a hash table. LH* uses this scheme to map keys to a set of nodes.
It assumes partially consistent global knowledge of the participants, which
means that every node can directly determine the recipient of a message. If a
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node erroneously receives a message that was delivered from a node with an
outdated mapping, it can simply use its own hash functions and retry. Hash
functions change when nodes decide to split their responsibility or to take
over the (partial) responsibility of another node, commonly for load balancing
reasons.

Later extensions provide support for mirroring (LH*m) and striping (LH*s),
similar to hard disk RAID systems. Another interesting achievement was the
combination with Reed-Solomon codes in LH*RS. They provide this system
family with efficient recovery mechanisms in the face of failing nodes. Still,
the general scheme shows that the LH* family was originally designed for data
storage in rather static server clusters or LAN environments. Especially their
support for self-maintenance is rather limited.

9.2.3 Ring Topologies

Most overlay networks are based on ring topologies. This may be due to sym-
metry reasons, but also for simplicity. The more complex a topology becomes,
the harder it is to maintain it in a decentralised way.

Chord

Chord [SMK+01] uses a very regular ring topology, which makes it one of the
more beautiful representatives of the KBR class. Short connections follow the
one-way ring, long connections span ranges of 1/2k for k ∈ 1.. log N . This
results in binomial tree structures and O(log N) depth.

The original Chord paper is generally worth reading. It contains proofs for
certain graph properties, such as the depth of log N , which it even maintains
with high probability under a 50% chance of arbitrary node failure. Under the
same assumption, it is provably advisable to maintain log N short connections
to assure connectivity. Many of these properties apply in similar form to other
overlays.

There is a considerable number of extensions to Chord. They include
anonymity [HW02], sub-group building [KR04] or degree optimality [NW04].

Pastry

Pastry [RD01] is similar to Chord (and Tapestry) in that it uses a ring topology
for short connections. The long connections, however, are determined using a
prefix routing table. Every Pastry node has its own key, which it stores as a
fixed-base number (commonly hexadecimal). For each prefix of that number,
it tries to find nodes with keys that differ in the next digit, to make them long
connections corresponding to this prefix plus the digit. The topology depth
depends on the prefix length for which nodes can be found. Given an equal
node distribution over the key space, the depth becomes O(log N).
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A variant of Pastry, called Bamboo [RGRK04], replaces parts of its main-
tenance algorithm by epidemic communication [DGH+87, Bir02, JGKvS04].
In an evaluation, the authors show that Chord and Pastry require a very
high maintenance overhead under frequent node failures and joins (high churn
rates). Bamboo aims to decouple the frequency of maintenance messages from
this rate, so that it only depends on the number of nodes in the system. Mea-
surements show that this yields considerably better scalability.

On the down side, Bamboo does not achieve a complete decoupling, since
nodes still have to ping other nodes that they heard of, to assure their actual
availability. It is also worth mentioning that Bamboo trades correctness for
scalability, argument being that correctness is not achievable under high churn
rates.

Tapestry

Tapestry [ZKJ01] is often cited together with Pastry. Both have mainly identi-
cal topologies and similar properties. Tapestry emerged from the OceanStore
project3 [KBC+00].

SkipNet

SkipNet [HJS+03] inherits its name from skip lists [Pug89], a linked list data
structure that speeds up traversals by adding long links that skip over a number
of entries. SkipNet is similar to a double-sided Chord. Its short connections
follow a two way ring, the long connections are selected based on bit prefixes.
An interesting feature is that the long connections result in a recursive ring
structure.

A difference to Chord is the node order along the ring. SkipList uses a two-
fold addressing scheme based on literal domain names and numeric identifiers.
The names are used to distribute nodes along the ring, which potentially im-
proves locality of neighbours and can support domain internal routing. Bit
prefixes of the numeric identifiers are then used to join scattered nodes into
sub-rings that skip over the ring.

HyperRing [AS04] provides a similar topology that extends skip graphs to
support provable properties for advanced queries, including range queries.

9.2.4 Trees

P-Grid

P-Grid [Abe01] is one of the very few overlays that build directly on a tree
structure. Short connections form an unbalanced tree, long connections into

3http://www.oceanstore.org/

http://www.oceanstore.org/
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other subtrees support the efficient navigation across the tree. The expected
depth of the overall graph lies within O(log N), which renders balancing the
tree unnecessary.

P-Grid has a long tradition in being ignored by citations, although its tree
structure inherently provides many interesting properties that other overlays
lack or struggle to provide. The original publication is also worth reading.
It gives some insights in the self-organisation aspects of the system and was
one of the few papers at that time that cited closely related work in the early
1990s.

Trie Overlay

Freedman etal. describe another of the few tree structures in the overlay
area, a distributed trie [FV02]. While this is generally an interesting idea,
the maintenance costs are relatively high and it is not clear how well the
correctness of the topology can be maintained under frequent failures.

9.2.5 De-Bruijn Graphs

There are a number of overlays that are based on de-Bruijn graphs [dB46].
They do not require any long connections, as their topology provides them with
logarithmic depth while keeping a fixed out-degree at each node. Examples
are ODRI [LKRG03], Koorde [KK03] and Omicron [DMS04]. In the simplest
case, these networks only require a constant out-degree of two per node in
their directed graph, which obviously makes them degree-optimal. De-Bruijn
graphs are frequently used in static low-latency networks [II81], e.g. in clusters
and super computers.

All de-Bruijn overlays have the problem of being hard to maintain under
frequent node failures. If the node count is not close to a power of two, they
become irregular, which means that they have to take measures to replace
missing nodes by means that are external to the topology. This often requires
non-local actions. Their main problem, however, is the low degree, which
requires them to proactively take additional measures to prevent topology
disconnection when neighbours fail. Also, neighbour connections are exactly
predicted by the topology, there is no freedom of choice, which effectively
prevents optimisations through topology adaptation.

Koorde

Koorde [KK03] is implemented based on Chord, but it replaces the topology
by a de-Bruijn graph. The paper presents two different configurations, one
with a fixed number of neighbours (e.g. 2), where the depth is optimal and
the maintenance is as complex as in other de-Bruijn implementations. The
second configuration keeps O(log N) neighbours, which increases the resilience
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and meats the lower bound of O(log N/ log log N) depth for this case. There
is no evaluation comparing resilience and maintenance overhead against other
systems.

ODRI

ODRI [LKRG03], the Optimal Diameter Routing Infrastructure, similarly de-
ploys de-Bruijn graphs. It is evaluated by a graph theoretical comparison
with previous KBR topologies that shows the major advantages of de-Bruijn
graphs. The maintenance issues are not part of the comparison.

Omicron

Omicron [DMS04] is another system where the authors have realized the prob-
lems regarding topology maintenance. They try to circumvent them by replac-
ing the potentially unreliable participants by more resilient clusters of nodes.
The idea is to split the monolithic overlay service that each node normally
has to provide into separate tasks that are then distributed within the cluster.
Node heterogeneity is supported by assigning different roles based on a node’s
capabilities. The available roles are taken from a DHT application: Routing,
Caching, Indexing and Maintenance. The demands increase in this order and
form a service hierarchy.

The authors propose incentives for nodes to take over higher-demanding
services. Their revenue is given by a higher position in the hierarchy that
frees them from lower-level tasks. On the other hand, lower nodes have an
incentive to provide better service to nodes above them in the hierarchy as
they benefit from their service. It is somewhat unclear if these incentives are
beneficial. They work as long as all participants follow the rules (in which
case their actual need is questionable), but when nodes break the rules, it is
unlikely that the incentives will be maintained by the system. The overall idea
of providing heterogeneous services for heterogeneous nodes, however, can help
in the design of more scalable systems.

9.2.6 Other Topologies

CAN

CAN [RFH+01] has one of the most complex topologies amongst the KBR
overlays. It is based on a d-dimensional Torus in which each node is responsible
for a part of its surface. Routing does not use any long connections. It is based
on the Euclidean distance at the surface, which leaves the diameter of the
topology within O(N1/d). Note that d is fixed at deployment time. There is
an extension that provides CAN with a logarithmic diameter [XZ02] by adding
long ranging connections.
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Kademlia

Kademlia [MM02], as opposed to most other KBR networks, does not apply
the Euclidean metrics, but uses the XOR-metric for its responsibility func-
tion. Therefore, its key space it not a ring but a flat interval. Apart from
that, long connections are established just as in Chord, which gives it ba-
sically the same SLOSL implementation. Nodes are chosen from the interval
[2i, 2i+1], i ∈ [0, log |K |), resulting in logarithmic depth. As an interesting
property, Kademlia can vary the number of bits that are resolved at each
routing step.

HyperCup

HyperCup [SSDN02] was the first system to deploy a distributed hypercube.
As with de-Bruijn graphs, this topology is commonly deployed in static in-
terconnection networks of super computers. Consequently, it requires a con-
siderable amount of maintenance in a dynamic environment and the resulting
hypercubes degenerate if the number of nodes diverges from a power of 2.

9.2.7 Hierarchical Overlays and Efficient Grouping

Hierarchical overlays were proposed both for structured and unstructured net-
works. The latter often deploy so-called Super-Peers or Ultra-Peers, which
form a subgroup of more powerful participants. They support the network
by providing extensive services like general network maintenance, indexing or
(long-range) forwarding. Normal nodes then connect to this infrastructure and
provide data or run queries. Despite their potentially large number, the top-
level of these hierarchies is somewhat similar to server farms in the client-server
model. Current Gnutella versions are entirely built on top of this approach,
which has lead to a remarkable increase in performance.

Hierarchies in structured overlays commonly deploy variants of flat topolo-
gies like Chord or Tapestry. A common approach is to build additional rings
that accommodate more powerful nodes. They become the preferred routers
in the network, which can sensibly reduce the average network distance.

The incentives are a common problem in all of these systems. Why should
a node do more than it absolutely has to? Countless evaluations have observed
the problem of free-riders that refuse to contribute [AH00, YZLD05]. In cer-
tain scenarios, this can become a critical problem. On the other hand, even
multi-server systems like the original E-Donkey [HSS03] worked surprisingly
well and apparently achieved to motivate enough contributors. The long-term
success of a heterogeneous system seems to depend very much on the specific
applications, the emerging use patterns and the social impact.
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Brocade

Brocade [ZDH+02] was one of the first implementations of hierarchical over-
lays. It extends the Tapestry overlay to provide ”landmarks” inside each au-
tonomous system (or subnet) that help in optimising routing decisions. These
special nodes connect to each other in a way similar to the super-peer approach
of unstructured networks. The goal is to avoid long or slow routes by providing
alternative paths through the faster landmark routes. The main problems of
the system regard the bootstrap of the landmark overlay and the initial lookup
of the nearest landmark node by the other participants.

Structured Superpeers

The Structured Superpeers approach [MCKS03] describes a two-ring extension
to Chord in which

√
N super nodes form an additional super peer ring. Every

super node is responsible for maintaining an arc of the main ring and keeping
track of all nodes in that range, in addition to the global knowledge of all
super peers. Since the number of nodes in a given arc can vary over time and
can temporarily differ considerably from other arcs, a load balancing scheme
is deployed amongst the super peers. It allows them to split arcs and to
delegate responsibilities to maintain a reasonably balanced load. To allow for
super node failures, they maintain a global list of normal nodes that volunteer,
sorted by the amount of offered contribution.

It is worth noting that the super peer ring only represents an efficient, but
redundant extension to the normal Chord ring. This leaves the latter as the
default fall-back even in the case of massive super peer failures. The authors
do not investigate the possibility of epidemic communication within the super
peer ring. It would therefore be interesting to see if such an approach could
help in lifting the burden of maintaining the global knowledge amongst the
super peers.

Coral

Coral [FM03] extends the previous approach to providing three redundant
levels of rings. The innermost ring is reserved for nodes that experience a very
low latency of at most 30 ms amongst all participants, whereas the middle
ring allows 100 ms and includes all nodes from the inner ring. The outer
most ring is formed by all nodes that participate in the system. As the best
connected nodes link the rings, forwarded messages can switch to faster rings
whenever they hit one of them. The faster rings have fewer participants, which
both speeds up hop-by-hop latency and reduces the number of hops along the
forwarding paths. It does, however, increase the load inside the inner circles.

From the publication, it is somewhat unclear how big the overhead of
determining the appropriate rings is for a node. The decision requires the
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node to measure its latency towards a certain number of other nodes within
the respective circle. It is also unclear how nodes are supposed to decide that
they are in the wrong ring, as opposed to a neighbour being the wrong one.
The underlying question is how the best quorum of closely connected nodes can
be extracted from the total number of participants, without requiring global
knowledge. The authors expect nodes to jump back and forth between the
rings in order to find an optimal position. This should eventually encourage
the old neighbours of the node to join its new ring. A prove for eventual
stabilisation is missing.

Hierarchical Chord

Hierarchical Chord [GEBF+03] is another multi-ring approach based on the
Chord system. The authors require the more powerful participants in the
system to form a global ring that is then used to address the entry points
into sub-networks. An advantage of the system is the support for arbitrary
topologies within the autonomous sub-systems. Global addressing is based on
group identifiers, but the lower topologies can be anything from a star network
to another Chord overlay. The global overlay can exploit redundant entry
points if more than one member of a sub-networks participates in it. On the
other hand, the global network is smaller than the total number of participants
in the system. This shortens the paths between the different groups.

Autonomous Sub-Networks

The same idea is later presented in [MD04] for the Pastry network. The
publication is very focused on locality within organisations, which allows the
resulting system to be deployed in the POST application [MPR+03] for de-
centralised email infrastructures.

Diminished Chord

Diminished Chord [KR04] presents an interesting extension to the Chord sys-
tem that provides it with embedded low-overhead group topologies. It supports
multicast and can be seen as an alternative to heavy weight group hierarchies.

9.3 Topologies – Comparison and Evaluation

It is generally difficult to provide analytical proves for the characteristics of de-
centralised overlay networks. Some properties were proven for Chord [SMK+01]
and Koorde [KK03] in the original publications. However, analytical compar-
isons between overlays are still rare.
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To simplify comparisons, [CC04] presents a cost model on a per node basis.
It models latency and message overhead and allows to compare different DHT
topologies. Obviously, star networks yield the lowest costs. A more interesting
outcome is that Plaxton trees (as used in Chord and Pastry) are relatively
efficient, as is a six dimensional torus (as provided by CAN). Lower dimensional
tori and de-Bruijn graphs are less efficient. The results are based on simplified
assumptions such as an equal distribution of nodes and data over the topology.

Another interesting comparison of topologies is provided by [GGG+03].
The metrics include the freedom of choosing a neighbour, static resilience
and support for latency adaptation. Except for de-Bruijn graphs (Koorde,
Omicron) and trees (P-Grid), the authors consider all major overlay topologies
that were available at the time. The paper is therefore worth reading for an
overview of well known systems.

The major finding is that rings never have worse properties than the other
topologies, but achieve the highest flexibility and fault tolerance. The au-
thors conclude that ring topologies are the most promising designs for overlay
networks. A drawback of the evaluation is the missing consideration of the
maintenance overhead. Also, the next publication shows that de-Bruijn graphs
would have been another very interesting candidate for this comparison.

[LKRG03] motivates the design of ODRI (see 9.2.5) by comparing its de-
Bruijn topology to Chord, CAN and (less extensively) Pastry. The evaluation
takes a graph theoretical perspective. One of the results is the finding of inter-
esting similarities between Chord and CAN, but only under the (unrealistic)
assumption of a logarithmic dimensionality of CAN. Also, the comparison with
Chord is somewhat constrained as Chord is fixed at a base of 2. Higher values
decrease the diameter of the graph at the cost of a higher degree.

Under the given assumptions, the evaluation yields some compelling advan-
tages of de-Bruin based systems. They yield the lowest diameter, the lowest
node degree and the highest path independence for the topology. These prop-
erties also result in a high resilience against random node failure. The optimal
diameter assures that even fall-back routes are not longer than the shortest
path. A drawback of the comparison is the lack of consideration of the main-
tenance overhead, which is considerably higher in de-Bruijn networks.

In [BNAG04], Bergström and others present preliminary work on a formal-
ism for the static verification of KBR overlays. For the state being, they do
not consider any dynamic adaptation or topology reconfiguration under which
the verification holds. However, following this path further, one could imagine
a similar approach based on OverML models.
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9.4 Message Overhead and Physical Networks

When multiple overlays run on top of a single physical network, the aggregated
overhead for their maintenance may become exhaustive. The Node Views
architecture attacks this problem by integrating the data layer used by these
overlays. It provides locally consistent views to different components which
decouples maintenance from the frequency of routing decisions and allows to
merge maintenance tasks from different overlays.

The resource sparing integration of different overlays at design time is a
new approach enabled by this work. However, the general problem of reduc-
ing maintenance overhead for multiple overlays has been tackled before. The
main area of improvements is the mapping between virtual topologies and the
physical network, which is mainly orthogonal to the design time approach.

9.4.1 Physical Mappings

Jannotti [Jan02] presented an extension to the physical routing infrastruc-
ture. Two new primitives, packet reflection and path painting, allow nodes
to incrementally improve their local part of the mapping between the virtual
topologies and the physical network.

Nakao etal. [NPB03] extend this idea towards a so-called ”routing under-
lay” to provide overlays with a more global view of the physical network. Cur-
rently, overlay nodes commonly try to determine the availability, hop-count
and latency of other nodes using pings, thus possibly issuing several pings for
a single neighbour selection. The authors propose to reduce the number of
necessary pings by adding services to physical routers that allow estimating
distances in several granularities based on BGP data (Border Gateway Proto-
col [RL95, Hui99]). New primitives expose BGP’s view on the global graph of
autonomous systems (AS) and estimate distances based on router hop-counts
or AS traversals. This effectively establishes a simple data acquisition layer in
the physical network, which shows a certain similarity with the more general
and higher-level Node Views approach.

Birck and others developed a tool set for simulating peer-to-peer traffic
and its effect on physical networks at a large scale [BHMS04]. The proposed
approach is to run the simulation in two steps, beginning with an application
layer simulation of the peer-to-peer traffic itself. The message logs of the test
run are then fed into a network simulator (such as ns24) that can simulate the
resulting traffic at the physical network level. This allows a higher scalability of
the simulations, as fewer layers are simulated at the same time. It is interesting
to note that the Node Views approach provides an inherent level of abstraction
for the design of overlay networks that might be particularly well suited for
the application level simulation step.

4http://www.isi.edu/nsnam/ns (Oct. 15, 2006)

http://www.isi.edu/nsnam/ns
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9.4.2 Message Overhead and Stability

Rodrigues etal. [RB04] evaluate the message overhead in DHT storage systems.
Most of these systems have a logarithmic diameter, which allows them to
keep the node degree and therefore the local maintenance overhead low. The
opposite approach is a system with global knowledge which is very efficient in
static networks or when data is highly replicated. The authors evaluate the
overhead of swapping data between nodes when the responsibility changes.
Their finding is that DHT based mass storage only make sense in relatively
static networks or in extremely large systems of several million users. Global
knowledge is the most efficient solution for the first case. In large systems, an
increased diameter is only efficient for low replication, which is rather unlikely
given the current sizes of hard disks. These findings are very specific to storage
systems and do not hold for other overlay applications.

Castro etal. [CJK+03] compare embedded multicast trees in overlays with
external overlays per group (see 2.3.1). Embedded multicast proves to be
considerably more efficient in terms of message overhead, mainly due to the
increased maintenance overhead in multiple overlays.

[SGMZ04] compares different multicast designs for overlays under realistic
deployment scenarios. The results show a clear advantage of low-diameter
graphs for the stability of the system. On the performance side, multi-tree
designs like SplitStream [CDK+03] prove to provide a considerably higher
throughput. Finally, clustering based on latency has a positive effect on the
overall performance.

[BSV03] presents measurements of the Overnet file swapping network which
is based on the Kademlia overlay. The main emphasis is on the availability of
nodes. The authors can show that many nodes change their IP address over
time without disappearing from the network. This effect can falsify measure-
ment studies and usually results in an increased maintenance overhead for the
overlay. Furthermore, the general availability of nodes varies considerably over
the day and nodes tend to participate on a sporadic basis. While these findings
may not easily map to other types of overlay applications, they show well that
the meaning of availability is not easily defined in a peer-to-peer environment.

9.5 Design and Implementation of Overlay Net-
works and Topologies

The design and implementation of overlay networks has received interest from
both the overlay and middleware communities. The major approaches that
preceded and motivated this thesis were already presented in 3.2.

So far, there have been very few efforts for standardisation in this area.
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JXTA5 [JXT03] was such an effort. As described in 3.2, however, its strong
focus on unstructured broadcast networks has prevented it from providing
sufficiently high-level abstractions for simplifying the design of overlay systems
and efficient topologies.

Two years later, a common API for KBR overlay networks was proposed by
Dabek etal. [DZDS03], that has since been adopted in a substantial number of
implementations. It was extracted from a comparison study of CAN, Chord,
Pastry and Tapestry (see section 9.2). The paper is driven by the specific
requirements of a number of different applications, namely Distributed Hash
Tables (DHT), Overlay-internal Anycast and Multicast (CAST), Decentralised
Object Location and Routing (DOLR) and Caching. Their requirements fall
into two categories: message forwarding (or routing) and access to the local
routing state, which are reflected by the API.

Given this background, the work presented in this thesis is the first to pro-
vide standardised, domain specific languages and high-level abstractions for
the design of overlay networks and their topologies. There is a small set of
recent work that is very closely related to the ideas presented here. This com-
prises two recent projects, namely P2 [LCH+05] at the University of Berkeley
and Gridkit [GCBP05] at the University of Lancaster, as well as a publica-
tion by Karl Aberer and others [AOAG+05]. The latter and P2 are described
in the following sections. Gridkit has its own section in the implementation
chapter 8.4.

9.5.1 General Concepts in P2P Overlay Networks

A very recent publication [AOAG+05] by Aberer and others presented a wrap
up of general concepts in overlay systems. The authors identify and describe
six basic design decisions in current overlays. They must agree on

• a virtual identifier space

• a mapping of resources and nodes to the identifier space

• a management scheme for the identifier space, executed by the nodes

• a topology graph that embeds the identifier space

• a routing strategy

• a maintenance strategy

The ideas behind this separation follow the known concepts of KBR networks
(see 9.2). That makes the paper generally worth reading for a comprehensive
overview of the theoretical concepts in the field. As a single drawback, the
integration of unstructured networks like Gnutella is somewhat artificial, as it

5http://www.jxta.org
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requires the introduction of unused identifiers and empty mappings to these
systems.

The authors also mention their interest in folding the presented concepts
back into the available overlay implementations to straighten their design. It
would therefore be interesting to see if this allows for a separation of concerns
also for the initial design process and hence for helpful abstractions in new
frameworks.

In comparison, this thesis presents a well founded middleware architecture
that takes a different focus on the design itself. Its goal is to capture overlay
concepts from the point of view of topology design. The topology graph, the
semantics of identifiers (if available) and the deployed routing strategy find
their abstract representation in SLOSL and EDGAR. Maintenance is situated in
the harvester components.

The remaining concepts (identifier mapping and management) are of a
rather theoretical nature. While important for the topological design, they do
not sensibly contribute to the actual implementation. SLOSL motivates that
they are already covered by the design of the graph. It is therefore currently
unclear what additional advantages such a further separation of concerns pro-
vides for the design of overlay frameworks.

9.5.2 Declarative Overlay Routing

Modelling overlay topologies in declarative queries is a new idea that is pre-
sented in this thesis and in previous publications of the author [BB05a, BB05b].
During the course of this work, however, a similar idea [LHSR05, LCG+06]
emerged independently in another recent project, called P26.

P2 uses distributed, declarative queries written in a dialect of the Datalog
query language [CGT89] to recursively build up routing state at the network
nodes. While this was initially targeted at lower level routing layers, later
publications extend this approach to the design of overlay networks [LCH+05].
Here, the original dialect is extended with domain specific predicates to adapt
it to the more specific requirements of overlay routing and maintenance mech-
anisms. The resulting language was named Overlog.

The general idea of using a declarative query language dialect is the same in
SLOSL and Overlog. However, the differences are also interesting to see. Over-
log exploits the natural recursion of the Datalog language to model recursive
routing as a distributed query execution process. This eventually results in
aggregating the necessary routing state at each node. Overlay maintenance is
therefore implemented as distributed query processing.

SLOSL, on the other hand, refuses to produce such a tight coupling of routing
and maintenance. In fact, one of its design goals was the separation of routing

6http://p2.cs.berkeley.edu/
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components on the one hand from maintenance components on the other hand,
as well as different components from each other. This allows the Node Views
architecture to support different ways of maintaining overlays (like static or
gossip networks) through pluggable components and without modifications to
the data representation or routing layer. It also enables sharing controllers
and state between overlays to reduce the aggregated maintenance overhead of
multiple overlays.

Both SLOSL/OverML and Overlog allow for the declarative, high-level design
of overlay systems. They show that the new, declarative, data-driven design
paradigm for routing decisions and overlay topologies opens up a broad and
very promising new field of research in the modelling and engineering of overlay
software.

9.6 Quality-of-Service in Publish-Subscribe

Following a workshop contribution of the author in [BFM06], chapter 2.2
presented an overview of quality-of-service metrics in the publish-subscribe
area. There have been few publications on this topic so far. Arajo and Ro-
drigues [AR02] present a distinction between a content profile (such as the
precision of a sensor) and a QoS profile, allowing to request periodic or spo-
radic delivery, as well as bandwidth requirements and latency bounds. No
other metrics are considered.

Eugster etal. [EFGK03] refer to persistence, transactions and priorities as
relevant metrics. In this thesis, persistence is grouped under the more general
concept of delivery guarantees. While message priorities have found their
place, transactions are not regarded. They place very high requirements on
the broker infrastructure and it is generally questionable if they are suitable
for a decoupled system model like publish-subscribe.

Outside the field of publish-subscribe, there is a large body of literature on
quality-of-service in the networking and Internet environment [Hui99, ZOS00,
ZDE+93], especially regarding differentiated services and resource reservation.
Another area of interest is messaging middleware, including CORBA [Obj02]
and JMS [Sun02].

The set of metrics presented in chapter 2.2 was largely taken from previous
work in these areas. The application to the publish-subscribe model and its
distributed implementations, however, has not been considered before in a
comparatively extensive way.

9.7 Modelling and Generating Software

Modelling has been part of the software development process for decades. In
todays world of object oriented software design, the most well known general
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purpose modelling language is UML. Additionally, various domain specific
languages are available for the high-level design of applications or their com-
ponents.

9.7.1 UML

Today, object-oriented software is commonly modelled in the OMG’s Unified
Modelling Language (UML [Obj01]), a set of general purpose, diagrammatic
modelling languages that describe various views on a design. UML supports
functional models for use cases, object models for the code structure and dy-
namic models for the behaviour of the system. Figure 9.2 provides a complete
overview of the available diagrams, figure 9.3 shows the relation of UML to a
number of other software modelling techniques.

Figure 9.2: Diagrams in UML (source: [Kel05], authorised)

It is worth noting that UML is not limited to the design of software. It has
been used in various other modelling scenarios including business processes
and organisational structures.

One kind of dynamic diagrams in UML are state machine diagrams, which
have clearly influenced the work on EDSL. They describe software functionality
through named states and textually defined transitions. Just as EDSL, the dia-
grams have support for subgraphs that structure the diagram into a hierarchy
of superstates and substates.

Compared to the generic UML state machine diagrams, EDSL provides ad-
ditional domain specific semantics. Its integration into OverML makes it aware
of HIMDEL and SLOSL, which allows the definition of very specific events and sub-
scriptions. While a mapping of EDSL graphs down to a representation in UML
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is straight forward, it ignores the machine readable semantics of transitions
that are available in EDSL.

9.7.2 CASE tools

Computer-Aided Software Engineering (CASE) tools are one class of widely
deployed tools that support the diagrammatic design of applications through
visual editors, mainly based on UML. Many of the available CASE tools further
support some form of source code generation (see below) that outputs code
fragments for the software under design. These tools are in wide spread use in
commercial software design. They help in defining and visualising the design
of software before the actual implementation.

One of the problems with the CASE approach is the lack of abstraction.
The design process is very tightly coupled to a specific software solution and
the design of source code for its components. Although code generation from
CASE tools can help in supporting language independence, this is not an
intrinsic feature of the CASE approach itself. The tight coupling to source
code design leaves decisions about the abstract design granularity and the
completeness of models almost entirely to the developers. The CASE approach
therefore requires a considerable skill level to be effective.

Figure 9.3: The history of UML and other Object-Oriented Methods and
Notations (source: [Zoc04], authorised)
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9.7.3 The OMG Model Driven Architecture

The Model Driven Architecture [MM03] is a software design approach proposed
by the Object Management Group (OMG7). It is founded on the developments
around UML, but explicitly describes a more general approach.

The main idea is to enforce the power of abstract models over platform
specific implementations. MDA applications are designed in platform inde-
pendent models (PIM) that are then transformed (possibly through further
intermediate PIMs) into platform specific models (PSM) and finally augmented
with platform specific code to provide a complete implementation of a system.
Coming from the UML area, the OMG’s MDA is mainly targeted at business
logic and large-scale enterprise software design, although generally applicable
to most software design processes.

This thesis presents a Model Driven Architecture specifically for the design
of overlay networks. The deliberately narrowed focus provides the Node Views
model and its OverML languages with very rich semantics for the target area.
These semantics can parametrise the transformation process, which ultimately
leads to more specialised PSMs that are optimised for the specific model and
its target platform.

9.7.4 Generative Programming and Domain Specific Lan-
guages

As opposed to general purpose modelling languages like UML, domain specific
languages aim to provide semantically richer models for a more restricted class
of software systems. Sometimes, these languages are executed by interpreters.
More commonly, Generative Programming [CE00] translates these language
into source code written in general purpose programming languages. This can
either result in directly compilable code or in code fragments that must be
extended by hand. Often, code is automatically merged with hand-written
code or yields abstract classes that are meant to be subclassed in an object-
oriented style. Arguably, the most common use cases are object interface
descriptions and data binding, where customised implementations for APIs,
network protocols and data classes are generated from higher-level descriptions
and data schemas.

Examples are CORBA IDL [Pop97, IDL99] or WSDL [W3C01] for object
interfaces and Castor8 or JAXB [V+06] for data binding. The latter makes
a good example for the main advantages of this approach. Data schemas are
rich in that they capture exactly the structure and type of data blocks. They
are programming language independent and allow for various mappings to
different implementations and environments. Writing data classes by hand, as

7http://www.omg.org/
8http://www.castor.org/

http://www.omg.org/
http://www.castor.org/
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well as readers, writers and validators for the data is lengthy, unamusing work,
that is best done by generators once the semantics are defined in a compact
and semantically rich language.

Another area where domain specific XML languages have recently found
broad deployment are web application servers and web services. The most
popular examples are arguably deployment descriptor languages in the Java
Enterprise Edition framework. The main use case in this context is software
component configuration. The Spring framework for Java [WB05] is a promi-
nent and well established project that shows how domain specific configuration
languages can help in decoupling software components. The underlying Inver-
sion of Control paradigm moves the glue code between components out of the
source code and into an external XML language. This approach makes the
deployment highly configurable and adaptable to different environments.

In the context of domain specific XML languages, OverML represents a
new, integrated set of languages for the domain of overlay implementations.
The five languages are based on the Node Views architecture and capture the
semantics of node attributes, message data, topology views, routing decisions
and event-driven processing. They are independent of programming languages
and frameworks and allow for different mappings to concrete implementations.

Especially EDSL is influenced by languages for component configuration.
It moves the event-driven interaction out of the components themselves and
models them as a domain specific, platform independent event graph.

9.8 Modelling Distributed Systems and Proto-
cols

The long history of research in distributed computing systems yielded a num-
ber of modelling techniques. One of the most interesting formal models is the
π-calculus [Mil99], a minimal process calculus. Its primitives are concurrency,
input/output communication and the creation, replication and termination of
processes. Their combination allows to express the behaviour of distributed
systems in a way that enables system analysis and reasoning about the equiv-
alence of different systems.

The π-calculus has been augmented with cryptographic primitives (the Spi
calculus [AG97]) and other syntactic extensions to support its application to
various fields of process modelling. One of its more recent applications is the
Business Process Modelling Language (BPML [A+02]).

More commonly, distributed systems are modelled in graphs as finite au-
tomata or Petri Nets [Pet63] which are equally powerful. The latter provide
very convenient support for concurrency and synchronisation, which are impor-
tant concepts in the distributed systems and parallel processing communities.
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EDSL follows the automaton approach to protocol modelling which better
supports its close integration into OverML. Communication protocols are com-
monly specified and modelled as event-driven finite state-machines, based on
the historically well established theory of automata. Even a general purpose
modelling language like UML supports state machines as a way to specify
system behaviour and component interactions (see section 9.7.1). Countless
finite state-machine languages exist for various different special purposes and
domains, examples being Ragel9, FSM-Lang10 or ASML11.

Frameworks like SEDA [WCB01] or State Threads12 show the benefits of
the state machine approach in terms of performance, scalability and design
aspects for distributed systems. They can be used to build highly concurrent
server architectures13 [PDZ99]. Another advantage of this approach is the
near-ubiquitous support of the underlying event-based networking primitives
select or poll on virtually any platform, which makes these frameworks easily
portable or re-writable across POSIX-compatible systems [Ste03].

As with SLOSL and SQL, the major advantage of EDSL over other finite
state-machine languages is the augmented domain specific semantics and the
integration with OverML and the SLOSL events. Due to the common theoretical
background, EDSL graphs can be mapped to other state machine languages
without major difficulties.

9.9 Databases and Data-Driven Software

Database research has a long tradition in computer science. Data abstractions,
query languages, database management systems and multi-tier architectures
had major impacts on various other fields, above all software design and dis-
tributed systems. Today, the most common database abstraction is based on
tuple relations stored in tables, although XML databases are gaining ground.

A number of different query languages were developed for different pur-
poses and different applications. The Structured Query Language for relational
database management systems (SQL [SQL03a]) is by far the most widely used
query language in database applications today, one of the most widely applied
programming languages and a major requirement in job offers for software
developers14. Other important languages are the logical query language Dat-
alog [CGT89] and the relatively young W3C standard XQuery [XQu06] for
querying XML data.

9http://www.elude.ca/ragel/ (Aug. 30, 2006)
10http://fsmlang.sourceforge.net/ (Aug. 30, 2006)
11http://research.microsoft.com/fse/asml/default.aspx (Aug. 30, 2006)
12http://state-threads.sourceforge.net/ (Oct. 17, 2006)
13http://aap.sourceforge.net/ (Oct. 20, 2006)
14http://www.dedasys.com/articles/language popularity.html (Oct. 15, 2006)

http://www.elude.ca/ragel/
http://fsmlang.sourceforge.net/
http://research.microsoft.com/fse/asml/default.aspx
http://state-threads.sourceforge.net/
http://aap.sourceforge.net/
http://www.dedasys.com/articles/language_popularity.html


146 CHAPTER 9. RELATED WORK

9.9.1 Database Views

Views are a concept that became part of the SQL’92 standard [SQL92]. They
provide pre-defined queries that look like normal database tables to the user
and recursively support sub-views and other queries. Their main advantage is
the layered support for abstractions on top of the basic database schema. An-
other benefit is their definition inside the database which allows pre-optimised
evaluation as with stored procedures.

The work presented in this thesis found a new application of databases and
views in the area of distributed systems. SLOSL, a new view definition language
based on SQL, is used to specify topology rules in a declarative and machine
readable way. The extensions of SLOSL over SQL provide more specific seman-
tics for the target domain of topologies and overlay networks. Section 8.2.1
describes a mapping for generating SQL view creation statements from SLOSL

statements. In comparison, the original SLOSL statement is much easier to read
and provides a more specific description of the topological features.

Data Warehousing is a field in database research that makes extensive use
of views. It lead to the invention of materialised views that physically store
the content of views for faster read access. This is obviously payed with higher
update costs. The maintenance of views is therefore a topic that received major
interest in the database community [LW95]. Especially in distributed database
management systems, view updates must be communicated efficiently to avoid
excessive overhead.

Many achievements in this field can be adopted for SLOSL views. In fact,
the introduction of views into the area of overlay networks and topologies
makes it possible to map distributed view maintenance algorithms directly to
overlay maintenance schemes. The distributed harvesters of section 7.4 are one
example where efficient view maintenance has a major impact on the overall
system performance. Different view maintenance algorithms can be deployed
to achieve the required tradeoff between the speed of update dissemination
and the communication overhead. The support for SLOSL views in EDSL and
HIMDEL allows their platform independent, modular specification in OverML.

9.9.2 Data-Driven Software Architectures

The Node Views architecture is clearly influenced by the Model-View-Controller
pattern (MVC [Ree79, BMR+96]). It stands for a separation of concern be-
tween three main types of system components responsible for processing, pre-
senting and updating data:

• a data model that stores and processes data

• view components that have read-only access to the model and use its
data for presentation and decisions (views, routers, visualisers, etc.)
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• control components that update data (harvesters and controllers)

The main idea behind this pattern is the instantiation of a central data
store that decouples controllers from views. It is well established in GUI
frameworks for the Smalltalk programming language15 or in the Java Swing
GUI library16, but also in web frameworks based on Java Servlets [M+03] and
Java Server Pages (JSP [D+06]).

In the Node Views architecture, the model is an active database, a concept
that was first described in [DBM88]. Active databases provide event-driven
callbacks, commonly based on triggers and event-driven rules. Rules are pro-
cessed on data updates and cause user defined code to be executed. Today,
most database management systems have active features, such as triggers and
(procedural) trigger languages. MVC frameworks often deploy the Observer
or Listener pattern [BMR+96] to provide a similar functionality to view or
control components.

The Node Views architecture borrows this idea to support SLOSL view events
in EDSL. Being a domain specific language, SLOSL is restricted to the generation
of semantically relevant and semantically rich event types (see 5.5). It further
extends the MVC idea by introducing platform independent languages for
data-driven decisions in views and controllers. The database model, topology
rules, routing decisions and maintenance triggers are all specified in OverML,
which makes them machine readable and available to MDA translators.

15http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html (Oct. 15, 2006)
16http://java.sun.com/j2se/1.5.0/docs/api/index.html?javax/swing/

package-tree.html (Oct. 15, 2006)

http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://java.sun.com/j2se/1.5.0/docs/api/index.html?javax/swing/package-tree.html
http://java.sun.com/j2se/1.5.0/docs/api/index.html?javax/swing/package-tree.html
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Chapter 10

Conclusion and Future
Work

The growing interest in decentralised overlay infrastructures for Internet ser-
vices shows a noticeable paradigm shift in distributed systems research. Nu-
merous projects from several research communities and commercial organisa-
tions have started building and deploying self-organising, server-free overlay
systems. Adoption, however, has been restricted to tightly selected areas,
dominated by few applications, such as EDonkey/Overnet and KaZaA for file
search, or BitTorrent for the distribution of large files.

Amongst the technical reasons for the limited availability of deployable
systems is the complexity of their design and the incompatibility of systems
and frameworks. Applications are tightly coupled to a specific overlay imple-
mentation and the framework it uses. This leaves developers with two choices:
implementing their application based on the fixed combination of overlay, net-
working framework and programming language, or reimplementing the overlay
based on the desired application framework and language.

Implementing an overlay, even as a reimplementation, is a task that ex-
hibits considerable challenges. Protocols have to be adapted, completed and
partially reverse engineered from the original system to implement them cor-
rectly. Message serialisations and interfaces have to be rewritten for the new
framework. State maintenance and event handling are programmed in very dif-
ferent ways in different environments, which typically requires their redesign.
Reimplementing an overlay for a new environment is therefore not necessarily
less work than writing a new one.

Even if an existing overlay implementation meets the application level re-
quirements on the framework, the examples in chapter 2.2 motivate that dis-
tributed applications can well benefit from the diversity of choices between
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different overlays. The current designs, however, tie the implementation of
applications to one specific overlay, straight from the design to test and de-
ployment.

The current techniques used for overlay implementation turn out to become
limiting factors in the development cycle of overlay applications. The work pre-
sented in this thesis provides distributed system developers with novel tech-
niques for the platform-independent, integrative design of overlay networks.

Contribution of the Thesis

This thesis motivated the search for new ways in overlay software design and
presented a novel methodology for the integrative, platform-independent, high-
level design of adaptable overlay networks. This approach provides overlay
designers with high-level modelling techniques and application developers with
portable, integrative overlay implementations.

Quality-of-Service in an Overlay Application

The case study in chapter 2 motivated the need for integrative, portable,
adaptable overlay implementations. In section 2.3, it compared a number of
well-known overlay systems and system types that were designed for publish-
subscribe applications.

To this end, a prior section (2.2) devised meaningful criteria for the com-
parison of overlay implementations for publish-subscribe applications. It pre-
sented the first broad evaluation of quality-of-service measures in the specific
context of publish-subscribe applications. The metrics it discussed for the in-
frastructure level are latency, bandwidth and message priorities. For the level
of notifications and subscriptions, the relevant metrics were found to be deliv-
ery guarantees, selectivity of subscriptions, periodic/sporadic delivery, order
of notifications, validity intervals, source redundancy, confidentiality, authen-
tication and integrity.

The system comparisons showed that there is no clear winner for the
publish-subscribe area. None of the current designs can efficiently solve all
problems that publish-subscribe applications may face. Different types of over-
lay systems are optimised for different requirements and are not easily merged
into all-win solutions.

This outcome makes a convincing case for combining simple overlay im-
plementations into more complex building blocks for quality-of-service aware
real-world applications. Such a bundle of choices allows them to adapt to
varying requirements by selecting optimised implementations for their current
system state. As chapter 3 explains, however, this requires new approaches for
the integrative, platform-independent, adaptable design of overlay networks.
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A Visual Modelling Approach for Overlay Networks

The Overlay Modelling Language OverML, presented in chapter 6, is a set of
domain specific languages for modelling overlay networks. Where current over-
lay implementations are hand-written and hand-tuned for specific frameworks,
overlay specifications in OverML are platform independent and can be auto-
matically translated into different platform specific implementations. This has
a number of advantages for the designers of both overlays and applications.

Platform independent modelling. The result of the modelling phase is a
platform independent representation of an overlay implementation. With
a single modelling effort, the overlay designer creates an entire set of
possible implementations.

Machine readable semantics. The high-level model of an overlay system
becomes accessible by tools for model transformation, system validation
and system analysis. This enables the development of highly context
aware tools for system design and automated model testing.

Visual design. Overlay designers can visually construct their overlay speci-
fications in design tools such as the SLOSL Overlay Workbench (see 8.1).
This reduces the perceived complexity of the system and commonly leads
to a better understanding and a better overview for the designers. De-
sign tools can exploit the rich semantics of OverML models to provide
context-sensitive support to developers.

Increased readability. The readability of graphical overlay specifications is
considerably higher than for source code. Specifications become under-
standable to other developers without external documentation. Where
current source code implementations require reverse engineering to un-
derstand or even re-implement a system, OverML specifications are easily
re-usable in different contexts and environments.

Reduced code complexity. The expressive event models and the subse-
quent generation of source code reduce the complexity of the remaining
external components. Their interfaces become generic and the size of
their implementation benefits from their specifically modelled task.

Design time testing. The high modelling level allows frameworks to execute
and test partial specifications, as exemplified in section 8.1.3. Where
a source code implemented system requires major components of the
target implementation to be available, OverML specifications only need a
generic software infrastructure for testing, visualising and benchmarking.

OverML forms the intermediate language that connects readable specifications
and generated implementations. Its applicability to different kinds of overlay



152 CHAPTER 10. CONCLUSION AND FUTURE WORK

topologies was motivated in section 5.3, routing schemes were exemplified in
section 5.4 and possible overlay maintenance patterns were presented in chap-
ter 7. A complete specification-to-deployment walk-through was presented in
sections 8.4 and 8.5, including insights into implementation details.

Data-driven Topology Design and Adaptation

The SQL-Like Overlay Specification Language SLOSL, presented in chapter 5, is
a data-driven language for the specification of rules and adaptation strategies
in the design of overlay topologies. Its short and readable expressions imple-
ment the local decisions that determine the main characteristics of an overlay
network. This makes the implementation of complex routing strategies trivial
and easy to understand.

The data-driven approach encapsulates the local state of a node and enables
generic interfaces to state keeping and local decisions. It avoids additional state
keeping in hand-written components and increases the chance for making them
reusable in different overlay designs.

Section 5.3 shows a number of examples how different topologies and adap-
tation strategies can be implemented in SLOSL. Chapter 7 then describes a
number of generic update schemes for the local node database.

A Model Driven Architecture for Overlay Networks

OverML and the Node Views architecture represent a Model Driven Architec-
ture for the visual design and automated implementation of overlay networks.
They introduce a major paradigm shift from low-level, hand-written, frame-
work specific implementations towards visual, platform-independent models,
rapid implementation, adaptation and deployment based on source code gen-
eration, and automated optimisation strategies based on query optimisation.

It is a side effect of modelling approaches to encourage the delay of other-
wise premature optimisations to later design phases. In Model Driven Archi-
tectures, much of this can be left to optimising translators.

The high readability of the visual models and visual tools like the SLOSL

Overlay Workbench will enable designers to deal with a considerable increase
in complexity of their systems. This will allow very interesting new overlay
designs in the future.

Future Work

The Node Views Model Driven Architecture and the OverML languages open
up an interesting field of future work. Future framework implementations can
be built directly around this architecture and thus harness the new level of free-
dom in overlay design. The decreased complexity of overlay implementations
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and the now possible reuse of components allows developers and researchers
to focus on new, more complex challenges in the overlay design area.

Inter-Overlay Optimisation

The Node Views architecture integrates overlay implementations at the data
level. This merges the state of different running systems and thus reduces the
maintenance overhead involved.

Furthermore, OverML makes various aspects of the deployed algorithms
and protocols machine readable. This opens up the path towards more sophis-
ticated inter-overlay optimisation strategies to reduce the redundancy when
different overlay specifications are deployed. Future work should further in-
vestigate this field to come up with generic strategies. Starting points are query
optimisation techniques from the database area as well as code optimisation
strategies from the compiler area.

Model Analysis

It is a hard problem but also an interesting question to what extent the process
of inferring the global guarantees provided by a topology from the local rules
can be automated. In current structured overlay networks, topology rules
are stated apart from the implementation as a local invariant whose global
properties are either proven by hand or found in experiments.

The Node Views architecture proposed in this thesis is the first to move
these rules into machine readable overlay models. This makes them available
for automated model transformation and analysis. Future work should exam-
ine the semantics of OverML and SLOSL under system analysis aspects and try
to infer global properties from the models.

An important aspect in this context is topology validation. Given an
OverML specification of a topology, validation tools could check the correct-
ness of topology and routing algorithm, possibly considering different node
distributions.

Framework Toolsets and Harvester Patterns

At the current state, it is hard to predict which design patterns will emerge
from the long-term utilisation of SLOSL and OverML (or similar languages) in
real-world overlay design. Only the wide-spread use of these languages and of
frameworks that support them will allow us to extract generic components and
patterns from the resulting overlay designs. It is therefore a long-term task
to fold the emerging generic design helpers back into models and framework
toolsets.
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Chapter 7 outlined a number of interesting harvester types. As described,
OverML supports their specification in terms of node data schemas, views and
protocols. However, it would be interesting to augment OverML with more
far-reaching models that capture the specific semantics of these harvester de-
sign patterns. These patterns would become part of the platform-independent
model to apply more easily to different overlay implementations. Such an
approach would further reduce the overall design effort and could lead to a
number of interesting higher-level optimisations for the platform specific im-
plementations.

Portable Controllers and Harvesters

OverML currently assumes harvesters and controllers to be part of platform
specific frameworks or user-provided code. In many cases, however, their al-
gorithms could be expressed in a platform independent language, which would
allow a mapping to different platform specific implementations. Future work
could investigate different controller types and try to come up with extensions
to EDSL that move a larger part of the currently platform specific components
to the modelling level. Some of the ideas behind Overlog [LCH+05] and Mace-
don [RKB+04] may provide starting points.

A possible alternative would be a common scripting language similar to
the procedural trigger languages found in current database implementations.
However, this approach would apply at the framework level rather than the
modelling level. It would require this language to be available in all frame-
works and thus reduce the platform-independence of the specifications. As
an intermediate solution, a scripting language can be used to prototype the
controllers that could then be re-implemented for specific frameworks.

Execution Environments

A platform-independent model, as provided by OverML, can naturally be im-
plemented in different ways to target different environments. In the deploy-
ment phase, the dynamic aspects of an application can be restricted to the
envisioned scenarios, which allows environments to trade generality against
speed. In the debugging and testing phase, it is most important to provide
substantial insights into the running system. Simulators and debuggers can
therefore take a more analytical approach, visualise different parts of the sys-
tem and provide statistics about various decisions taken during the execution
of SLOSL and EDSL. Future work in these areas should investigate different
types of environments and find well-adapted framework implementations for
their specific requirements.

A particularly interesting idea in the simulation context was presented
in [BHMS04]. The proposed environment splits the entire simulation into two
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steps: an application level simulation of the overlay deployment itself and a
network level simulation of the resulting message traffic. This separation allows
for a higher scalability of each step. The Node Views approach provides a
considerably high and semantically rich level of abstraction for overlay designs
that might be very well suited for application level simulations. Future work
should look at ways to efficiently deploy OverML specifications in application
level simulators and to map the resulting logs to network level simulators.

Mobile and Ad-Hoc Environments

OverML is a set of domain specific languages designed for the requirements and
capabilities of Internet overlay networks. However, the application of similar
ideas to other networking environments, especially mobile ad-hoc networks,
is a very interesting field of future work. The clean separation of routing
and maintenance in the Node Views architecture should keep the necessary
modifications small.

The main differences between overlays for the Internet and mobile net-
works lie within the efficient broadcast capabilities of mobile installations and
the limited reachability of remote nodes in wireless multi-hop networks. The
former is of low importance for the modelling techniques themselves. The
latter requires a representation in the node data model. Therefore, modifi-
cations for mobile environments can be expected at the level of frameworks
and specifications rather than the modelling language or the general archi-
tecture. Future work should investigate the application of OverML to mobile
environments and possible extensions to the language to support the specific
requirements of mobile applications.
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A.1 The RelaxNG Schema of OverML

The following is the formal RelaxNG [CM01] schema specification for the
OverML XML languages.

<?xml version=” 1.0 ” encoding=”UTF−8”?>
<grammar

xmlns:doc=” ht tp : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/annotate ”
xmlns:edsl=” http : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/ ed s l ”
xmlns:edgar=” http : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/edgar ”
xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema−datatypes ”
xmlns:himdel=” http : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/himdel ”
xmlns:slosl=” http : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/ s l o s l ”
xmlns : s lowgui=” ht tp : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/slow−gui ”
xmlns:s low=” ht tp : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/ slow”
xmlns:nala=” http : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/nala ”
xmlns:overml=” ht tp : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML”
xmlns:math=” ht tp : //www.w3 . org /1998/Math/MathML”
xmlns=” ht tp : // re laxng . org /ns/ s t ru c tu r e /1 .0 ”
datatypeLibrary=” ht tp : //www.w3 . org /2001/XMLSchema−datatypes ”>

<define name=” i d e n t i f i e r s t r i n g ”>
<data type=”Name”/>

5 </define>
<define name=” typ e s t r i n g ”>

<data type=”QName”/>
</define>
<define name=” i d e n t i f i e r a t t r i b u t e ”>

10 <attribute name=”access name”>
<ref name=” i d e n t i f i e r s t r i n g ”/>

</attribute>
</define>
<define name=”name attr ibute ”>

15 <attribute name=”name”>
<ref name=” i d e n t i f i e r s t r i n g ”/>

</attribute>
</define>
<define name=” type a t t r i bu t e ”>

20 <attribute name=”type name”>
<ref name=” typ e s t r i n g ”/>

</attribute>
</define>
<define name=” readab l e name at t r ibute ”>

25 <attribute name=” readable name”/>
</define>
<define name=”anyOtherElement”>

<element>
<anyName>

30 <except>
<nsName

ns=” ht tp : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/ slow”/>
<nsName

ns=” ht tp : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/nala ”/>
<nsName

ns=” ht tp : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/ s l o s l ”/>
<nsName

ns=” ht tp : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/himdel ”/>
35 <nsName

ns=” ht tp : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/ ed s l ”/>
</except>

</anyName>
<zeroOrMore>

<choice>
40 <attribute>

<anyName/>
</attribute>
<text/>
<ref name=”anyOtherElement”/>

45 </choice>
</zeroOrMore>

</element>
</define>
<define name=”math express ion ”>

50 <choice>
<element name=”math:math”>

<ref name=” math express ion content ”/>
</element>
<ref name=” math express ion content ”/>

55 </choice>
</define>
<define name=” math express ion content ”>

<choice>
<ref name=”math apply”/>
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60 <ref name=”math number”/>
<ref name=”math constant ”/>

</choice>
</define>
<define name=” math inte rva l ”>

65 <choice>
<element name=”math:math”>

<ref name=” math in te rva l content ”/>
</element>
<ref name=” math in te rva l content ”/>

70 </choice>
</define>
<define name=” math in te rva l content ”>

<element name=” math : in t e rva l ”>
<attribute name=” c l o su r e ”>

75 <choice>
<value>open</ value>
<value>c l o s ed</ value>
<value>open−c l o s ed</ value>
<value>c losed−open</ value>

80 </choice>
</attribute>
<ref name=” math express ion content ”/>
<ref name=” math express ion content ”/>

</element>
85 </define>

<define name=” math l i s t ”>
<choice>

<element name=”math:math”>
<ref name=” math l i s t c on t en t ”/>

90 </element>
<ref name=” math l i s t c on t en t ”/>

</choice>
</define>
<define name=” math l i s t c on t en t ”>

95 <element name=” math : l i s t ”>
<zeroOrMore>

<attribute>
<anyName/>

</attribute>
100 </zeroOrMore>

<zeroOrMore>
<ref name=” math express ion content ”/>

</zeroOrMore>
</element>

105 </define>
<define name=”math apply”>

<element name=”math:apply”>
<ref name=”anyMathML”/>
<oneOrMore>

110 <ref name=”anyMathML”/>
</oneOrMore>

</element>
</define>
<define name=”math number”>

115 <element name=”math:cn”>
<zeroOrMore>

<attribute>
<anyName/>

</attribute>
120 </zeroOrMore>

<text/>
</element>

</define>
<define name=”math constant ”>

125 <element name=”math:c i ”>
<zeroOrMore>

<attribute>
<anyName/>

</attribute>
130 </zeroOrMore>

<text/>
</element>

</define>
<define name=”anyMathML”>

135 <choice>
<element>

<nsName ns=” ht tp : //www.w3 . org /1998/Math/MathML”/>
<empty/>

</element>
140 <ref name=” math l i s t ”/>

<ref name=” math inte rva l ”/>
<ref name=”math apply”/>
<ref name=”math number”/>
<ref name=”math constant ”/>
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145 </choice>
</define>
<start>

<doc:documentation xml:lang=”en”>OverML Schema 0 .2 − SUBJECT TO
CHANGES!</doc:documentation>

<ref name=” s l o w f i l e ”/>
150 </ start>

<define name=” s l o w f i l e ”>
<element name=” s l o w : f i l e ”>

<interleave>
<optional>

155 <ref name=” na la type s ”/>
</optional>
<optional>

<choice>
<zeroOrMore>

160 <ref name=” na l a a t t r i b u t e ”/>
</zeroOrMore>
<ref name=” na l a a t t r i b u t e s ”/>

</choice>
</optional>

165 <optional>
<choice>

<zeroOrMore>
<ref name=” s l o s l s t a t emen t ”/>

</zeroOrMore>
170 <ref name=” s l o s l s t a t emen t s ”/>

</choice>
</optional>
<optional>

<ref name=” edgar statements ”/>
175 </optional>

<optional>
<ref name=”message h ierarchy ”/>

</optional>
<optional>

180 <ref name=” eds l g raph ”/>
</optional>
<optional>

<ref name=” s low gu i ”/>
</optional>

185 </ interleave>
</element>

</define>
<define name=” s low gu i ”>

<element name=” s l owgu i : gu i ”>
190 <zeroOrMore>

<ref name=”anyGuiElement”/>
</zeroOrMore>

</element>
</define>

195 <define name=”anyGuiElement”>
<element>

<nsName
ns=” ht tp : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/slow−gui ”/>

<zeroOrMore>
<choice>

200 <attribute>
<anyName/>

</attribute>
<text/>
<ref name=”anyGuiElement”/>

205 </choice>
</zeroOrMore>

</element>
</define>
<define name=” na la type s ”>

210 <element name=” na l a : t ype s ”>
<zeroOrMore>

<ref name=”anyOtherElement”/>
</zeroOrMore>

</element>
215 </define>

<define name=” na l a a t t r i b u t e s ”>
<element name=” na l a : a t t r i b u t e s ”>

<zeroOrMore>
<ref name=” na l a a t t r i b u t e ”/>

220 </zeroOrMore>
</element>

</define>
<define name=” na l a a t t r i b u t e ”>

<zeroOrMore>
225 <element name=” na l a : a t t r i b u t e ”>

<attribute name=”name”>
<ref name=” i d e n t i f i e r s t r i n g ”/>
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</attribute>
<attribute name=”type name”>

230 <ref name=” typ e s t r i n g ”/>
</attribute>
<optional>

<attribute name=” s e l e c t e d ”>
<data type=”boolean ”/>

235 </attribute>
</optional>
<interleave>

<optional>
<element name=” n a l a : s t a t i c ”>

240 <empty/>
</element>

</optional>
<optional>

<element name=” na l a : t r a n s f e r a b l e ”>
245 <empty/>

</element>
</optional>
<optional>

<element name=” n a l a : i d e n t i f i e r ”>
250 <empty/>

</element>
</optional>
<optional>

<ref name=”nala depends ”/>
255 </optional>

</ interleave>
</element>

</zeroOrMore>
</define>

260 <define name=”nala depends ”>
<element name=”nala :depends ”>

<choice>
<interleave>

<attribute name=”type”>
265 <value>math</ value>

</attribute>
<ref name=” n a l a a t t r i b u t e r e f s ”/>
<ref name=”math express ion ”/>

</ interleave>
270 <interleave>

<attribute name=”type”>
<value>ex t e rna l</ value>

</attribute>
<ref name=” n a l a a t t r i b u t e r e f s ”/>

275 <optional>
<element name=” n a l a : c a l l ”>

<ref name=” i d e n t i f i e r s t r i n g ”/>
</element>

</optional>
280 </ interleave>

</choice>
</element>

</define>
<define name=” n a l a a t t r i b u t e r e f s ”>

285 <ref name=” n a l a a t t r i b u t e r e f ”/>
<zeroOrMore>

<ref name=” n a l a a t t r i b u t e r e f ”/>
</zeroOrMore>

</define>
290 <define name=” n a l a a t t r i b u t e r e f ”>

<element name=” at t r ibute−r e f ”>
<attribute name=”name”>

<ref name=” i d e n t i f i e r s t r i n g ”/>
</attribute>

295 </element>
</define>
<define name=”message h ierarchy ”>

<element name=” himde l :message h ie rarchy ”>
<interleave>

300 <zeroOrMore>
<ref name=” t op l e v e l c o n t a i n e r ”/>

</zeroOrMore>
<zeroOrMore>

<ref name=”header ”/>
305 </zeroOrMore>

<zeroOrMore>
<ref name=” pro toco l ”/>

</zeroOrMore>
</ interleave>

310 </element>
</define>
<define name=” t op l e v e l c o n t a i n e r ”>
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<element name=” h imde l : conta ine r ”>
<optional>

315 <ref name=” readab l e name at t r ibute ”/>
</optional>
<ref name=” type a t t r i bu t e ”/>
<zeroOrMore>

<ref name=” c o n t e n t f i e l d ”/>
320 </zeroOrMore>

</element>
</define>
<define name=” conta ine r ”>

<element name=” h imde l : conta ine r ”>
325 <optional>

<ref name=” readab l e name at t r ibute ”/>
</optional>
<optional>

<ref name=” type a t t r i bu t e ”/>
330 </optional>

<zeroOrMore>
<ref name=” c o n t e n t f i e l d ”/>

</zeroOrMore>
</element>

335 </define>
<define name=”header ”>

<element name=”himdel :header ”>
<optional>

<ref name=” readab l e name at t r ibute ”/>
340 </optional>

<optional>
<ref name=” i d e n t i f i e r a t t r i b u t e ”/>

</optional>
<interleave>

345 <zeroOrMore>
<ref name=”header ”/>

</zeroOrMore>
<zeroOrMore>

<ref name=” c o n t e n t f i e l d ”/>
350 </zeroOrMore>

<oneOrMore>
<ref name=”message”/>

</oneOrMore>
</ interleave>

355 </element>
</define>
<define name=”message”>

<element name=”himdel :message ”>
<optional>

360 <ref name=” readab l e name at t r ibute ”/>
</optional>
<ref name=” type a t t r i bu t e ”/>
<zeroOrMore>

<ref name=” c o n t e n t f i e l d ”/>
365 </zeroOrMore>

</element>
</define>
<define name=” pro toco l ”>

<element name=” h imde l :p ro toco l ”>
370 <ref name=” con t en t a t t r i bu t e s ”/>

<zeroOrMore>
<element name=”himdel:message−r e f ”>

<ref name=” type a t t r i bu t e ”/>
</element>

375 </zeroOrMore>
</element>

</define>
<define name=” c o n t e n t f i e l d ”>

<choice>
380 <element name=” h imde l : a t t r i bu t e ”>

<ref name=” con t en t a t t r i bu t e s ”/>
</element>
<element name=” himde l : content ”>

<ref name=” con t en t a t t r i bu t e s ”/>
385 </element>

<ref name=” conta ine r ”/>
<element name=” himde l : conta iner−r e f ”>

<ref name=” con t en t a t t r i bu t e s ”/>
</element>

390 <element name=”himdel :v iewdata ”>
<attribute name=” st ruc tured ”>

<data type=”boolean ”/>
</attribute>
<ref name=” con t en t a t t r i bu t e s ”/>

395 </element>
</choice>

</define>
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<define name=” con t en t a t t r i bu t e s ”>
<ref name=” i d e n t i f i e r a t t r i b u t e ”/>

400 <ref name=” type a t t r i bu t e ”/>
<optional>

<ref name=” readab l e name at t r ibute ”/>
</optional>

</define>
405 <define name=” s l o s l s t a t emen t s ”>

<element name=” s l o s l : s t a t emen t s ”>
<zeroOrMore>

<ref name=” s l o s l s t a t emen t ”/>
</zeroOrMore>

410 </element>
</define>
<define name=” s l o s l s t a t emen t ”>

<element name=” s l o s l : s t a t emen t ”>
<ref name=”name attr ibute ”/>

415 <optional>
<attribute name=” s e l e c t e d ”>

<data type=”boolean ”/>
</attribute>

</optional>
420 <interleave>

<oneOrMore>
<ref name=” s l o s l s e l e c t ”/>

</oneOrMore>
<optional>

425 <ref name=” s l o s l r a nk ed ”/>
</optional>
<oneOrMore>

<ref name=” s l o s l p a r e n t ”/>
</oneOrMore>

430 <zeroOrMore>
<ref name=” s l o s l w i t h ”/>

</zeroOrMore>
<optional>

<ref name=” s l o s l wh e r e ”/>
435 </optional>

<optional>
<choice>

<ref name=” s l o s l i n h e r i t b u c k e t s ”/>
<interleave>

440 <optional>
<ref name=” s l o s l h a v i n g ”/>

</optional>
<ref name=” s l o s l b u c k e t s ”/>

</ interleave>
445 </choice>

</optional>
</ interleave>

</element>
</define>

450 <define name=” s l o s l s e l e c t ”>
<element name=” s l o s l : s e l e c t ”>

<ref name=”name attr ibute ”/>
<ref name=” type a t t r i bu t e ”/>
<optional>

455 <choice>
<text/>
<ref name=”math express ion ”/>

</choice>
</optional>

460 </element>
</define>
<define name=” s l o s l p a r e n t ”>

<element name=” s l o s l : p a r e n t ”>
<ref name=” i d e n t i f i e r s t r i n g ”/>

465 </element>
</define>
<define name=” s l o s l r a nk ed ”>

<element name=” s l o s l : r a n k e d ”>
<ref name=” f parameter ”/>

470 <ref name=” f parameter ”/>
<choice>

<attribute name=” funct i on ”>
<choice>

<value>l owest</ value>
475 <value>h ighe s t</ value>

</choice>
</attribute>
<group>

<attribute name=” funct i on ”>
480 <choice>

<value>c l o s e s t</ value>
<value>f u r t h e s t</ value>
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</choice>
</attribute>

485 <ref name=” f parameter ”/>
</group>

</choice>
</element>

</define>
490 <define name=” f parameter ”>

<element name=” s l o s l : p a r ame t e r ”>
<ref name=”math express ion ”/>

</element>
</define>

495 <define name=” s l o s l w i t h ”>
<element name=” s l o s l : w i t h ”>

<ref name=”name attr ibute ”/>
<optional>

<ref name=”math express ion ”/>
500 </optional>

</element>
</define>
<define name=” s l o s l wh e r e ”>

<element name=” s l o s l :wh e r e ”>
505 <ref name=”math express ion ”/>

</element>
</define>
<define name=” s l o s l h a v i n g ”>

<element name=” s l o s l : h a v i n g ”>
510 <ref name=”math express ion ”/>

</element>
</define>
<define name=” s l o s l i n h e r i t b u c k e t s ”>

<element name=” s l o s l : b u c k e t s ”>
515 <attribute name=” i n h e r i t ”>

<value>t rue</ value>
</attribute>

</element>
</define>

520 <define name=” s l o s l b u c k e t s ”>
<element name=” s l o s l : b u c k e t s ”>

<optional>
<attribute name=” i n h e r i t ”>

<value> f a l s e</ value>
525 </attribute>

</optional>
<oneOrMore>

<element name=” s l o s l : f o r e a c h ”>
<ref name=”name attr ibute ”/>

530 <choice>
<ref name=” math l i s t ”/>
<ref name=” math inte rva l ”/>

</choice>
</element>

535 </oneOrMore>
</element>

</define>
<define name=” edgar statements ”>

<element name=” edga r : r ou t e r s ”>
540 <zeroOrMore>

<ref name=” edga r s t a r t ”/>
</zeroOrMore>

</element>
</define>

545 <define name=” edga r s t a r t ”>
<element name=” edga r : r ou t e r ”>

<ref name=”name attr ibute ”/>
<optional>

<attribute name=” s e l e c t e d ”>
550 <data type=”boolean ”/>

</attribute>
</optional>
<ref name=” edgar content ”/>

</element>
555 </define>

<define name=” edgar content ”>
<choice>

<ref name=” edgar f i r s tmatch ”/>
<ref name=” edgar f o rk ”/>

560 <ref name=” edgar tag ”/>
<ref name=” edga r p r ed i ca t e ”/>
<ref name=” edga r ex i t ”/>

</choice>
</define>

565 <define name=” edgar f i r s tmatch ”>
<element name=” edga r : f i r s tmat ch ”>

<oneOrMore>
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<ref name=” edgar content ”/>
</oneOrMore>

570 </element>
</define>
<define name=” edgar f o rk ”>

<element name=” edga r : f o r k ”>
<oneOrMore>

575 <ref name=” edgar content ”/>
</oneOrMore>

</element>
</define>
<define name=” edgar tag ”>

580 <element name=” edgar : tag ”>
<attribute name=”type”>

<ref name=” typ e s t r i n g ”/>
</attribute>
<ref name=” edgar content ”/>

585 </element>
</define>
<define name=” edga r p r ed i ca t e ”>

<element name=” edga r : p r ed i c a t e ”>
<ref name=”name attr ibute ”/>

590 <ref name=” edgar content ”/>
</element>

</define>
<define name=” edga r ex i t ”>

<element name=” edga r : e x i t ”>
595 <attribute name=” ta rge t ”>

<ref name=” typ e s t r i n g ”/>
</attribute>

</element>
</define>

600 <define name=” eds l g raph ”>
<element name=” eds l : edsm ”>

<interleave>
<ref name=” e d s l s t a t e s ”/>
<ref name=” e d s l t r a n s i t i o n s ”/>

605 </ interleave>
</element>

</define>
<define name=” e d s l s t a t e s ”>

<element name=” e d s l : s t a t e s ”>
610 <interleave>

<zeroOrMore>
<ref name=” e d s l s t a t e ”/>

</zeroOrMore>
<zeroOrMore>

615 <ref name=” eds l subgraph ”/>
</zeroOrMore>

</ interleave>
</element>

</define>
620 <define name=” e d s l t r a n s i t i o n s ”>

<element name=” e d s l : t r a n s i t i o n s ”>
<zeroOrMore>

<ref name=” e d s l t r a n s i t i o n ”/>
</zeroOrMore>

625 </element>
</define>
<define name=” eds l subgraph ”>

<element name=” eds l : subgraph ”>
<interleave>

630 <ref name=”name attr ibute ”/>
<attribute name=” id ”>

<ref name=” e d s l s t a t e i d ”/>
</attribute>
<attribute name=” en t r y s t a t e ”>

635 <ref name=” e d s l s t a t e i d ”/>
</attribute>
<attribute name=” e x i t s t a t e ”>

<ref name=” e d s l s t a t e i d ”/>
</attribute>

640 <optional>
<ref name=” eds l readab le name ”/>

</optional>
<ref name=” e d s l s t a t e s ”/>
<ref name=” e d s l t r a n s i t i o n s ”/>

645 </ interleave>
</element>

</define>
<define name=” e d s l s t a t e ”>

<element name=” e d s l : s t a t e ”>
650 <interleave>

<ref name=”name attr ibute ”/>
<attribute name=” id ”>
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<ref name=” e d s l s t a t e i d ”/>
</attribute>

655 <attribute name=” i nh e r i t c on t e x t ”>
<data type=”boolean ”/>

</attribute>
<attribute name=” long running ”>

<data type=”boolean ”/>
660 </attribute>

<optional>
<ref name=” eds l readab le name ”/>

</optional>
<zeroOrMore>

665 <ref name=” eds l c ode ”/>
</zeroOrMore>
<zeroOrMore>

<element name=” input ”>
<ref name=” edsl queue name ”/>

670 </element>
</zeroOrMore>
<zeroOrMore>

<element name=”output”>
<ref name=” edsl queue name ”/>

675 </element>
</zeroOrMore>

</ interleave>
</element>

</define>
680 <define name=” e d s l t r a n s i t i o n ”>

<element name=” e d s l : t r a n s i t i o n ”>
<interleave>

<optional>
<ref name=” eds l readab le name ”/>

685 </optional>
<zeroOrMore>

<ref name=” eds l c ode ”/>
</zeroOrMore>
<choice>

690 <group>
<attribute name=”type”>

<value>message</ value>
</attribute>
<ref name=” ed s l me s s a g e t r an s i t i o n ”/>

695 </group>
<group>

<attribute name=”type”>
<value>event</ value>

</attribute>
700 <ref name=” e d s l e v e n t t r a n s i t i o n ”/>

</group>
<group>

<attribute name=”type”>
<value>outputchain</ value>

705 </attribute>
<ref name=” ed s l o u t pu t cha i n t r an s i t i o n ”/>

</group>
<group>

<attribute name=”type”>
710 <value>t r a n s i t i o n</ value>

</attribute>
<ref name=” ed s l immed i a t e t r an s i t i on ”/>

</group>
<group>

715 <attribute name=”type”>
<value>t imer</ value>

</attribute>
<ref name=” e d s l t im e r t r a n s i t i o n ”/>

</group>
720 </choice>

</ interleave>
</element>

</define>
<define name=” ed s l me s s a g e t r an s i t i o n ”>

725 <interleave>
<optional>

<element name=” eds l :messagetype ”>
<text/>

</element>
730 </optional>

<ref name=” ed s l f r om s t a t e ”/>
<ref name=” eds l t o queue ”/>

</ interleave>
</define>

735 <define name=” e d s l e v e n t t r a n s i t i o n ”>
<interleave>

<optional>
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<element name=” ed s l : s u b s c r i p t i o n ”>
<text/>

740 </element>
</optional>
<ref name=” ed s l f r om s t a t e ”/>
<ref name=” eds l t o queue ”/>

</ interleave>
745 </define>

<define name=” e d s l t im e r t r a n s i t i o n ”>
<interleave>

<element name=” ed s l : t ime rd e l a y ”>
<data type=” in t e g e r ”/>

750 </element>
<ref name=” ed s l f r om s t a t e ”/>
<ref name=” eds l t o queue ”/>

</ interleave>
</define>

755 <define name=” ed s l o u t pu t cha i n t r an s i t i o n ”>
<interleave>

<ref name=” eds l f rom queue ”/>
<ref name=” eds l t o queue ”/>

</ interleave>
760 </define>

<define name=” ed s l immed i a t e t r an s i t i on ”>
<interleave>

<ref name=” ed s l f r om s t a t e ”/>
<ref name=” e d s l t o s t a t e ”/>

765 </ interleave>
</define>
<define name=” eds l c ode ”>

<element name=” ed s l : c od e ”>
<optional>

770 <attribute name=” classname”>
<ref name=” i d e n t i f i e r s t r i n g ”/>

</attribute>
</optional>
<optional>

775 <attribute name=”methodname”>
<ref name=” i d e n t i f i e r s t r i n g ”/>

</attribute>
</optional>
<optional>

780 <attribute name=” language ”/>
</optional>
<text>

<doc:documentation xml:lang=”en”>the text i s
base64−encoded ( z l i b−compressed ( code ) )</doc:documentation>

</ text>
785 </element>

</define>
<define name=” ed s l f r om s t a t e ”>

<element name=” ed s l : f r om s t a t e ”>
<ref name=” e d s l s t a t e r e f ”/>

790 </element>
</define>
<define name=” e d s l t o s t a t e ”>

<element name=” e d s l : t o s t a t e ”>
<ref name=” e d s l s t a t e r e f ”/>

795 </element>
</define>
<define name=” eds l f rom queue ”>

<element name=” ed s l : f r om s t a t e ”>
<ref name=” e d s l s t a t e q u e u e r e f ”/>

800 </element>
</define>
<define name=” eds l t o queue ”>

<element name=” e d s l : t o s t a t e ”>
<ref name=” e d s l s t a t e q u e u e r e f ”/>

805 </element>
</define>
<define name=” edsl queue name ”>

<ref name=” i d e n t i f i e r s t r i n g ”/>
</define>

810 <define name=” e d s l s t a t e r e f ”>
<attribute name=” r e f ”>

<ref name=” e d s l s t a t e i d ”/>
</attribute>

</define>
815 <define name=” e d s l s t a t e q u e u e r e f ”>

<ref name=” e d s l s t a t e r e f ”/>
<optional>

<attribute name=”queue”>
<ref name=” edsl queue name ”/>

820 </attribute>
</optional>



168 APPENDIX A. XML REFERENCE IMPLEMENTATIONS

</define>
<define name=” e d s l s t a t e i d ”>

<text/>
825 </define>

<define name=” eds l readab le name ”>
<element name=” eds l : r eadablename ”>

<text/>
</element>

830 </define>
</grammar>
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A.2 XSL Transformation from EDSL to the DOT
Language

<?xml version=” 1.0 ” encoding=”utf−8”?>
<xs l : s ty lesheet version=” 1.0 ”

xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”
xmlns : eds l=” ht tp : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/ ed s l ”

5 xmlns : l=” l o c a l ”
>

<xsl:output method=” text ” encoding=”UTF−8” />

<xsl:param name=”graph name”>edsm graph</xsl:param>
10

< l : c o l o u r s>
< l : c o l o u r type=” t r a n s i t i o n ” >#000000</ l : c o l o u r><!−− b l a c k −−>
< l : c o l o u r type=”message” >#0000 f f</ l : c o l o u r><!−− b l u e −−>
< l : c o l o u r type=” event ” >#f f0000</ l : c o l o u r><!−− r e d −−>

15 < l : c o l o u r type=”outputchain ”>#00 f f 0 0</ l : c o l o u r><!−− g r e e n −−>
< l : c o l o u r type=” timer ” >#f f 0 0 f f</ l : c o l o u r><!−− mag en t a −−>

</ l : c o l o u r s>

<xs l :var iable name=” co l ou r s ” s e l e c t=”document ( ’ ’ ) /∗/ l : c o l o u r s ”>
20

<xsl:template match=” eds l : edsm ”>
<xs l : text>digraph </ xs l : text>
<xsl:value−of s e l e c t=”$graph name”/>
<xs l : text> {</ xs l : text>

25 <xsl:call−template name=” cr ”/>

<xsl:apply−templates
s e l e c t=” ./ e d s l : s t a t e s / e d s l : s t a t e [@name = ’ s tar t ’ ] ”
mode=” start−end−state ”/>

30 <xsl:apply−templates
s e l e c t=” ./ e d s l : s t a t e s / e d s l : s t a t e [@name != ’ s ta r t ’ ] ”/>

<xsl:apply−templates
s e l e c t=” ./ e d s l : s t a t e s / eds l : subgraph ”/>

<xsl:apply−templates
35 s e l e c t=” ./ e d s l : t r a n s i t i o n s / e d s l : t r a n s i t i o n ”/>

<xsl:call−template name=” cr ”/>
<xs l : text>}</ xs l : text>
<xsl:call−template name=” cr ”/>

40 </xsl:template>

<xsl:template match=” eds l : subgraph ”>
<xs l :var iable name=” entry ” s e l e c t=” s t r i n g ( @entry state ) ”/>
<xs l :var iable name=” ex i t ” s e l e c t=” s t r i n g ( @ex i t s t a t e ) ”/>

45
<xs l : text>subgraph c l u s t e r </ xs l : text>
<xsl:value−of s e l e c t=”@id”/>
<xs l : text> {</ xs l : text>
<xsl:call−template name=” cr ”/>

50 <xsl:apply−templates s e l e c t=” . ” mode=” l ab e l ”/>
<xsl:call−template name=” cr ”/>

<xsl:apply−templates
s e l e c t=” ./ e d s l : s t a t e s / e d s l : s t a t e [ @id = $ entry or @id = $ ex i t ] ”

55 mode=” start−end−state ”/>
<xsl:apply−templates

s e l e c t=” ./ e d s l : s t a t e s / e d s l : s t a t e [ @id != $ entry and @id != $ ex i t ] ”/>
<xsl:apply−templates

s e l e c t=” ./ e d s l : t r a n s i t i o n s / e d s l : t r a n s i t i o n ”/>
60

<xsl:call−template name=” cr ”/>
<xs l : text>}</ xs l : text>
<xsl:call−template name=” cr ”/>

</xsl:template>
65

<xsl:template match=” e d s l : s t a t e ” mode=” start−end−state ”>
<xs l : text>”</x s l : t e x t ><xs l : va lue−o f s e l e c t=”@id”/><x s l : t e x t >”</ xs l : text>
<xs l : text> [ shape=”box”</ xs l : text>
<xsl:apply−templates s e l e c t=” . ” mode=” s ta t e−a t t r i bu t e s ”/>

70 <xs l : text>]</ xs l : text>
<xsl:call−template name=” cr ”/>

</xsl:template>

<xsl:template match=” e d s l : s t a t e ”>
75 <xs l : text>”</x s l : t e x t ><xs l : va lue−o f s e l e c t=”@id”/><x s l : t e x t >”</ xs l : text>

<xs l : text> [ shape=” c i r c l e ”</ xs l : text>
<xsl:apply−templates s e l e c t=” . ” mode=” s ta t e−a t t r i bu t e s ”/>
<xs l : text> ]</ xs l : text>
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<xsl:call−template name=” cr ”/>
80 </xsl:template>

<xsl:template match=” e d s l : s t a t e ” mode=” s ta t e−a t t r i bu t e s ”>
<xs l : text> , </ xs l : text>
<xsl:apply−templates s e l e c t=” . ” mode=” l ab e l ”/>

85 </xsl:template>

<xsl:template match=” e d s l : t r a n s i t i o n ”>
<xs l :var iable name=”type” s e l e c t=”@type”/>

90 <xs l : text>”</x s l : t e x t >
<xs l : va lue−o f s e l e c t=” s t r i n g ( . / f r om sta te /@ref ) ”/>
<x s l : t e x t >” −> ”</x s l : t e x t >
<xs l : va lue−o f s e l e c t=” s t r i n g ( . / t o s t a t e /@ref ) ”/>
<x s l : t e x t >” [ c o l o r=”</x s l : t e x t >

95 <xs l : va lue−o f s e l e c t=” s t r i n g ($ co l ou r s / l : c o l o u r [ @type = $ type ] ) ”/>
<x s l : t e x t >”</ xs l : text>

<x s l : i f t e s t=”normalize−space ( . / readablename ) ”>
<xs l : text> , l a b e l=”</x s l : t e x t >

100 <xs l : va lue−o f s e l e c t=”normalize−space ( . / readablename ) ”/>
<x s l : t e x t >”</ xs l : text>

</ x s l : i f>

<xs l : text> ]</ xs l : text>
105 <xsl:call−template name=” cr ”/>

</xsl:template>

<xsl:template match=” e d s l : ∗” mode=” l ab e l ”>
<xs l : text>l a b e l=”</x s l : t e x t >

110 <xs l : choo s e >
<xsl :when t e s t=”normalize−space ( . / readablename ) ”>

<xs l : va lue−o f s e l e c t=”normalize−space ( . / readablename ) ”/>
</xsl :when>
<x s l : o th e rw i s e ><xs l : va lue−o f s e l e c t=”normalize−space (@name) ”/></

x s l : o th e rw i s e >
115 </xs l : choo s e >

<x s l : t e x t >”</ xs l : text>
</xsl:template>

<xsl:template name=” cr ”>
120 <xs l : text>&#10;</ xs l : text>

</xsl:template>
</ xs l : s ty lesheet>
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A.3 XSL Transformation from EDSL to a flat
EDSM Graph

<?xml version=” 1.0 ” encoding=”UTF−8”?>
<xs l : s ty lesheet version=” 1.0 ”

xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”
xmlns : eds l=” ht tp : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/ ed s l ”>

5
<xsl:import hre f=”common . x s l ”/>

<xsl:output method=”xml” encoding=”UTF−8” indent=”no” />

10 <xsl:template match=” eds l : edsm ”>
<xsl:copy>

<e d s l : s t a t e s>
<xsl:apply−templates s e l e c t=” ./ e d s l : s t a t e s / e d s l : s t a t e ” mode=”edsm”/>
<xsl:apply−templates s e l e c t=” .// eds l : subgraph ” mode=”edsm”/>

15 </ e d s l : s t a t e s>
<e d s l : t r a n s i t i o n s>

<xsl:apply−templates s e l e c t=” .// e d s l : t r a n s i t i o n ” mode=”edsm”/>
</ e d s l : t r a n s i t i o n s>

</xsl:copy>
20 </xsl:template>

<xsl:template match=” eds l : subgraph ” mode=”edsm”>
<xs l :var iable name=” id ” s e l e c t=”@id”/>
<xsl:for−each s e l e c t=” e d s l : s t a t e s / e d s l : s t a t e ”>

25 <xsl:copy>
<xsl :attr ibute name=”name”>

<xsl:value−of s e l e c t=” concat ($ id , ’ ’ , @name) ”/>
</xsl :attr ibute>
<xsl:apply−templates s e l e c t=”@∗ [ local−name ( ) != ’name ’ ] ” mode=” copyattr ”/>

30 <xsl:apply−templates s e l e c t=” e d s l : ∗” mode=”edsm”/>
</xsl:copy>

</xsl:for−each>
<xsl:apply−templates s e l e c t=” e d s l : s t a t e s / eds l : subgraph ” mode=”edsm”/>

</xsl:template>
35

<!−− s t r i p emp t y e l e m e n t s −−>
<xsl:template match=” e d s l : ∗ [ not (@∗ or ∗ or normalize−space ( ) ) ] ” mode=”edsm”/>

<!−− c o p y e v e r y t h i n g e l s e −−>
40 <xsl:template match=” e d s l : ∗” mode=”edsm”>

<xsl:copy>
<xsl:apply−templates s e l e c t=”@∗” mode=” copyattr ”/>
<xsl:apply−templates s e l e c t=” e d s l : ∗| text ( ) ” mode=”edsm”/>

</xsl:copy>
45 </xsl:template>

<xsl:template match=”∗”>
<xsl:copy>

<xsl:copy−of s e l e c t=”@∗”/>
50 <xsl:apply−templates s e l e c t=”∗”/>

</xsl:copy>
</xsl:template>

</ xs l : s ty lesheet>
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A.4 XSL Transformation from EDSL to a merged
State Graph

<?xml version=” 1.0 ” encoding=”UTF−8”?>
<xs l : s ty lesheet version=” 1.0 ”

xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”
xmlns : eds l=” ht tp : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/ ed s l ”>

5
<xsl:output method=”xml” encoding=”UTF−8” indent=”no” />

<xsl:template match=” eds l : edsm ”>
<xsl:copy>

10 <xsl:copy−of s e l e c t=”@∗”/>
<xsl:apply−templates s e l e c t=” e d s l : s t a t e s ” mode=”merge eds l ”/>

</xsl:copy>
</xsl:template>

15 <xsl:template match=” e d s l : s t a t e s ” mode=”merge eds l ”>
<xsl:copy>

<xsl:copy−of s e l e c t=”@∗”/>
<xsl:apply−templates s e l e c t=” e d s l : s t a t e ” mode=”merge eds l ”/>

</xsl:copy>
20 </xsl:template>

<xsl:template match=” e d s l : s t a t e ” mode=”merge eds l ”>
<xs l :var iable name=” s t a t e ” s e l e c t=”@id”/>
<xsl:copy>

25 <xsl:copy−of s e l e c t=”@∗”/>
<xsl:copy−of s e l e c t=”∗”/>
<xsl:copy−of

s e l e c t=” . . / . . / e d s l : t r a n s i t i o n s / e d s l : t r a n s i t i o n [ e d s l : f r om s t a t e /@ref = $
s t a t e ] ”/>

</xsl:copy>
30 </xsl:template>

<xsl:template match=”∗”>
<xsl:copy>

<xsl:copy−of s e l e c t=”@∗”/>
35 <xsl:apply−templates s e l e c t=”∗”/>

</xsl:copy>
</xsl:template>

</ xs l : s ty lesheet>
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A.5 XSL Transformation from SLOSL to View
Objects

<?xml version=” 1.0 ” encoding=”utf−8”?>
<xs l : s ty lesheet version=” 1.0 ”

xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”
xmlns:code=” ht tp : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/codegen

”
5 xmlns:slosl=” http : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/ s l o s l ”

xmlns :nala=” ht tp : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/nala ”
xmlns:math=” ht tp : //www.w3 . org /1998/Math/MathML”
xmlns : ex s l t=” ht tp : // e x s l t . org /common”
xmlns : l=” l o c a l ”

10 exc lude− r e su l t−pre f ixe s=” l e x s l t ”
>

<xsl:import hre f=” na l a2ob j e c t s . x s l ”/>
<xsl:import hre f=”names . x s l ”/> <!−− name h a n d l i n g : c a p i t a l i z a t i o n , e t c . −−>

15
<xsl:key name=” a t t r i bu t e s ” match=”// na l a : a t t r i b u t e ” use=”@name”/>

<xsl:template match=”/”>
<c o d e : c l a s s e s>

20 <xsl:apply−templates s e l e c t=”∗/ s l o s l : s t a t emen t s / s l o s l : s t a t emen t ”/>
</ c o d e : c l a s s e s>

</xsl:template>

<xsl:template match=” s l o s l : s t a t emen t [ @se lected != ’ true ’ ] ”/>
25 <xsl:template match=” s l o s l : s t a t emen t ”>

<!−− c r e a t e c l a s s e s f o r a v i e w s t a t e m e n t −−>
<xs l :var iable name=” classname”>

<xsl:call−template name=” c a p i t a l i z e ”>
<xsl:with−param name=”name” s e l e c t=”@name”/>

30 </xsl:call−template>
</xs l :var iable>

<xs l :var iable name=”deps”>
<xsl:apply−templates mode=”attr ibute−depends ”/>

35 </xs l :var iable>

<code : v i ewc l a s s acc e s s=” pub l i c ” name=”{ concat ($ classname , ’View ’ ) }” extends=”
AbstractView”>

<x s l : i f t e s t=” s l o s l : b u c k e t s [ @inher i t = ’ true ’ ] ”>
<xsl :attr ibute name=” inh e r i t bu ck e t s ”>t rue</xsl :attr ibute>

40 </ x s l : i f>

<code : c on s t ruc to r>
<code:param name=”views ”/>
<xsl:for−each s e l e c t=” s l o s l : p a r e n t ”>

45 <code :parent><xsl:value−of s e l e c t=” s t r i n g ( ) ”/></ code :parent>
</xsl:for−each>
<xsl:for−each s e l e c t=” s l o s l : w i t h [ math: ∗ ] ”>

<code : a s s i gn f i e l d=”{@name}”>
<xsl:apply−templates s e l e c t=”math:∗” mode=” copy−expression ”/>

50 </ code : a s s i gn>
</xsl:for−each>

</ code : c on s t ruc to r>

<xsl:for−each s e l e c t=” s l o s l : w i t h ”>
55 <xs l :var iable name=”option name”>

<xsl:call−template name=” c a p i t a l i z e ”>
<xsl:with−param name=”name” s e l e c t=”@name”/>

</xsl:call−template>
</xs l :var iable>

60
<code :v i ewopt ion name=”{@name}”>

<xsl:apply−templates s e l e c t=”math:∗” mode=” copy−expression ”/>
</ code :v i ewopt ion>

</xsl:for−each>
65

<code :v i ewnodec la s s ac c e s s=” pr iva t e ” name=”ViewNode” extends=”AbstractNode”>
<code : c on s t ruc to r>

<code:param name=”node”/>
<xsl:for−each s e l e c t=” s l o s l : b u c k e t s / s l o s l : f o r e a c h /@name”>

70 <x s l : s o r t s e l e c t=” s t r i n g ( ) ”/>
<code:param name=”{ s t r i n g ( ) }”/>

</xsl:for−each>
<xsl:apply−templates s e l e c t=” s l o s l : s e l e c t ” mode=” c las sgen−const ructor ”/>

</ code : c on s t ruc to r>
75 <xsl:apply−templates s e l e c t=” s l o s l : s e l e c t ” mode=” c l a s s g en ”/>

</ code :v i ewnodec la s s>
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<c od e : n od e s e l e c t i o n>
<xsl:apply−templates s e l e c t=” s l o s l :wh e r e [ math: ∗ ] ”

80 mode=” copy−expression ”/>
<xsl:apply−templates

s e l e c t=” s l o s l : b u c k e t s [ @inher i t != ’ true ’ and s l o s l : f o r e a c h ] ”
mode=” copy−expression ”/>

<xsl:apply−templates s e l e c t=” s l o s l : h a v i n g [ math: ∗ ] ”
85 mode=” copy−expression ”/>

<xsl:apply−templates s e l e c t=” s l o s l : r a n k e d [ s t r i n g ( @function ) and
s l o s l : p a r ame t e r ] ”

mode=” copy−expression ”/>
</ c od e : n od e s e l e c t i o n>

</ code : v i ewc l a s s>
90 </xsl:template>

<xsl:template match=” s l o s l : s e l e c t ” mode=” c las sgen−const ructor ”>
<code : a s s i gn f i e l d=”{@name}”>

<xsl:apply−templates s e l e c t=”math:∗” mode=” copy−expression ”/>
95 </ code : a s s i gn>

</xsl:template>

<xsl:template match=” s l o s l : s e l e c t ” mode=” c l a s s g en ”>
<!−− i n f e r a t t r i b u t e t y p e s , c a l l ’ v i ew a t t r i bu t e ’ t o w r i t e ’ nodeproperty ’ t a g

−−>
100 <xsl:choose>

<xsl:when t e s t=”key ( ’ a t t r i bu t e s ’ , @name) ”>
<xsl:call−template name=” v i ew a t t r i bu t e ”>

<xsl:with−param name=”name” s e l e c t=”@name”/>
<xsl:with−param name=” a t t r i bu t e ” s e l e c t=”key ( ’ a t t r i bu t e s ’ , @name) [ 1 ] ”/>

105 </xsl:call−template>
</xsl:when>
<xsl:when t e s t=” .// math:c i [ subs t r ing ( . , 1 , 5 ) = ’ node . ’ and key ( ’ a t t r i bu t e s ’ ,

subs t r ing ( . , 6 ) ) ] ”>
<xsl:call−template name=” v i ew a t t r i bu t e ”>

<xsl:with−param name=”name” s e l e c t=”@name”/>
110 <xsl:with−param name=” a t t r i bu t e ”

s e l e c t=” .// math:c i [ subs t r ing ( . , 1 , 5 ) = ’ node . ’ and key ( ’
a t t r i bu t e s ’ , subs t r ing ( . , 6 ) ) ] [ 1 ] ”/>

</xsl:call−template>
</xsl:when>
<xsl:otherwise>

115 <xsl:call−template name=” v i ew a t t r i bu t e ”>
<xsl:with−param name=”name” s e l e c t=”@name”/>

</xsl:call−template>
<xsl:message>Cannot i n f e r a t t r i bu t e type o f ’<xs l : va lue−o f s e l e c t=”@name

”/> ’ .</xsl:message>
</xsl:otherwise>

120 </xsl:choose>
</xsl:template>

<xsl:template name=” v i ew a t t r i bu t e ”>
<!−− w r i t e ’ nodeproperty ’ t a g f o r an a t t r i b u t e −−>

125 <xsl:param name=”name”/>
<xsl:param name=” a t t r i bu t e ”/>

<xs l :var iable name=”type name”>
<x s l : i f t e s t=”$ a t t r i bu t e ”>

130 <xsl:call−template name=” sq l type ”>
<xsl:with−param name=”type” s e l e c t=”$ a t t r i bu t e /@type name”/>

</xsl:call−template>
</ x s l : i f>

</xs l :var iable>
135

<code :nodeproperty name=”{$name}” na la type=”{$type name}”/>
</xsl:template>

140 <!−− add d e p e n d e n c y i n f o r m a t i o n t o MathML t r e e −−>

<!−−
<xsl:template match=”node ( ) ” mode=”attr ibute−depends ”>

<xsl:for−each s e l e c t=” .// math:c i [ subs t r ing ( . , 1 , 5 ) = ’ node . ’ and not ( . =
p r e c ed i ng : :ma th : c i ) ] ”>

145 <x s l : s o r t s e l e c t=” s t r i n g ( ) ”/>
<l :name><xsl:copy−of s e l e c t=” subs t r ing ( . , 6 ) ”/></ l:name>

</xsl:for−each>
</xsl:template>

150 <xsl:template match=”node ( ) ” mode=”non−attribute−depends”>
<xsl:for−each s e l e c t=” .// math:c i [ subs t r ing ( . , 1 , 5 ) != ’ node . ’ and not ( . =

p r e c ed i ng : :ma th : c i ) ] ”>
<x s l : s o r t s e l e c t=” s t r i n g ( ) ”/>
<l :name><xsl:copy−of s e l e c t=” s t r i n g ( ) ”/></ l:name>

</xsl:for−each>
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155 </xsl:template>

<xsl:template match=” s l o s l : ∗” mode=” copy−expression ”>
<!−− default f o r ’ s l o s l : ∗ ’ : j u s t c o p y and c o n t i n u e t h e t r a v e r s a l −−>
<xsl:copy>

160 <xsl:copy−of s e l e c t=”@∗”/>
<xsl:apply−templates mode=”copy−expression ”/>

</xsl:copy>
</xsl:template>
−−>

165
<xsl:template match=”math:c i ” mode=” copy−expression ”>

<!−− add ’ code : type ’ and ’ c ode :na l a type ’ a t t r i b u t e s t o a l l m a t h : c i t a g s −−>
<xsl:copy>

<xsl:choose>
170 <xsl:when t e s t=” subs t r ing ( . , 1 , 5 ) = ’ node . ’ ”>

<xsl :attr ibute name=” code : type ”>a t t r i bu t e</xsl :attr ibute>
<xsl :attr ibute name=” code :na l a type ”>

<xsl:call−template name=” sq l type ”>
<xsl:with−param name=”type”

175 s e l e c t=”key ( ’ a t t r i bu t e s ’ , subs t r ing ( . , 6 ) ) /@type name”/>
</xsl:call−template>

</xsl :attr ibute>
<xsl:value−of s e l e c t=” subs t r ing ( . , 6 ) ”/>

</xsl:when>
180 <xsl:when t e s t=” subs t r ing ( . , 1 , 6 ) = ’ l o c a l . ’ ”>

<xsl :attr ibute name=” code : type ”> l o c a l a t t r i b u t e</xsl :attr ibute>
<xsl :attr ibute name=” code :na l a type ”>

<xsl:call−template name=” sq l type ”>
<xsl:with−param name=”type”

185 s e l e c t=”key ( ’ a t t r i bu t e s ’ , subs t r ing ( . , 7 ) ) /@type name”/>
</xsl:call−template>

</xsl :attr ibute>
<xsl:value−of s e l e c t=” subs t r ing ( . , 7 ) ”/>

</xsl:when>
190 <xsl:otherwise>

<xsl :attr ibute name=” code : type ”> i d e n t i f i e r</xsl :attr ibute>
<xsl:value−of s e l e c t=” s t r i n g ( ) ”/>

</xsl:otherwise>
</xsl:choose>

195 <xsl:apply−templates s e l e c t=”∗” mode=” copy−expression ”/>
</xsl:copy>

</xsl:template>

<xsl:template match=”math: ∗ [ . / / math:c i ] ” mode=” copy−expression ”>
200 <!−− add ’ code:depends ’ t a g s t o a l l l e v e l s o f t h e math t r e e −−>

<xs l :var iable name=” t e s t ” s e l e c t=” .// math:c i ”/>

<xsl:copy>
<xsl:copy−of s e l e c t=”@∗”/>

205
<xsl:for−each s e l e c t=”$ t e s t [ not ( . = p r e c e d i n g : : ∗ [ 1 ] ) ] ”>

<x s l : s o r t />

<xsl:choose>
210 <xsl:when t e s t=” subs t r ing ( . , 1 , 5 ) = ’ node . ’ ”>

<code:depends type=” a t t r i bu t e ”>
<xsl :attr ibute name=” na la type ”>

<xsl:call−template name=” sq l type ”>
<xsl:with−param name=”type”

215 s e l e c t=”key ( ’ a t t r i bu t e s ’ , subs t r ing ( . , 6 ) ) /@type name”/>
</xsl:call−template>

</xsl :attr ibute>
<xsl:value−of s e l e c t=” subs t r ing ( . , 6 ) ”/>

</ code:depends>
220 </xsl:when>

<xsl:when t e s t=” subs t r ing ( . , 1 , 6 ) = ’ l o c a l . ’ ”>
<code:depends type=” l o c a l a t t r i b u t e ”>

<xsl :attr ibute name=” na la type ”>
<xsl:call−template name=” sq l type ”>

225 <xsl:with−param name=”type”
s e l e c t=”key ( ’ a t t r i bu t e s ’ , subs t r ing ( . , 7 ) ) /@type name”/>

</xsl:call−template>
</xsl :attr ibute>
<xsl:value−of s e l e c t=” subs t r ing ( . , 7 ) ”/>

230 </ code:depends>
</xsl:when>
<xsl:otherwise>

<code:depends type=” i d e n t i f i e r ”><xsl:value−of s e l e c t=” s t r i n g ( ) ”/></
code:depends>

</xsl:otherwise>
235 </xsl:choose>

</xsl:for−each>

<xsl:apply−templates mode=”copy−expression ”/>
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</xsl:copy>
240 </xsl:template>

<xsl:template match=”math:∗” mode=” copy−expression ”>
<!−− default f a l l b a c k : j u s t c o p y and c o n t i n u e t h e t r a v e r s a l −−>
<xsl:copy>

245 <xsl:copy−of s e l e c t=”@∗”/>
<xsl:apply−templates mode=”copy−expression ”/>

</xsl:copy>
</xsl:template>

250 </ xs l : s ty lesheet>
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A.6 XSL Transformation from HIMDEL to Plain
Messages

<?xml version=” 1.0 ” encoding=”UTF−8”?>
<xs l : s ty lesheet version=” 1.0 ”

xmlns :x s l=” ht tp : //www.w3 . org /1999/XSL/Transform”
xmlns:msg=” http : //www. dvs1 . in fo rmat ik . tu−darmstadt . de/ r e s ea r ch /OverML/himdel ”

5 >

<xsl:import hre f=”common . x s l ”/>
<xsl:output method=”xml” encoding=”UTF−8” indent=”no” />
<xsl:strip−space elements=”∗”/>

10
<xsl:param name=” copy top l ev e l ”> f a l s e</xsl:param>

<xsl:template match=”msg:message hierarchy ”>
<msg:messages>

15 <xsl:apply−templates mode=”messages ”/>
<x s l : i f t e s t=”$ copy top l ev e l != ’ f a l s e ’ ”>

<xsl:copy−of s e l e c t=”msg:conta iner ”/>
<xsl:copy−of s e l e c t=”msg :protoco l ”/>

</ x s l : i f>
20 </msg:messages>

</xsl:template>

<xsl:template match=”msg:message”>
<msg:messages>

25 <xsl:apply−templates s e l e c t=” . ” mode=”messages ”/>
</msg:messages>

</xsl:template>

<xsl:template match=”/∗”>
30 <xsl:apply−templates s e l e c t=”msg:message hierarchy ” />

</xsl:template>

<xsl:template match=”msg:message” mode=”messages ”>
<xs l :var iable name=”message” s e l e c t=” . ”/>

35 <xs l :var iable name=” ch i l d r en ”>
<xsl:apply−templates s e l e c t=”msg:∗” mode=”message”/>
<xsl:apply−templates s e l e c t=” ance s to r : :msg :heade r [ s t r i n g ( @access name ) ] ”

mode=”message”/>
</xs l :var iable>

40 <xs l :var iable name=”typename” s e l e c t=”@type name”/>
<xs l :var iable

name=” pro to co l s ”
s e l e c t=” ance s to r : :msg :mes sage h i e ra r chy /msg :protoco l [ msg:message−ref /

@type name = $typename ] ”/>

45 <xsl:choose>
<xsl:when t e s t=”$ p ro to co l s ”>

<xsl:for−each s e l e c t=”$ p ro to co l s ”>
<msg:message>

<xsl:apply−templates s e l e c t=”$message/@access name |$ message/@type name
” mode=” copyattr ”/>

50 <xsl:copy−of s e l e c t=”$ ch i l d r en ”/>
<xsl:copy>

<xsl:apply−templates s e l e c t=”@access name |@type name” mode=” copyattr
”/>

</xsl:copy>
</msg:message>

55 </xsl:for−each>
</xsl:when>
<xsl:otherwise>

<xsl:copy>
<xsl:apply−templates s e l e c t=”@access name |@type name” mode=” copyattr ”/>

60 <xsl:copy−of s e l e c t=”$ ch i l d r en ”/>
</xsl:copy>

</xsl:otherwise>
</xsl:choose>

</xsl:template>
65

<!−− h e a d e r s −−>
<xsl:template match=”msg:header [ s t r i n g ( @access name ) ] ” mode=”message”>

<xsl:copy>
<xsl:apply−templates s e l e c t=”@∗” mode=” copyattr ”/>

70 <xsl:apply−templates s e l e c t=”msg:∗” mode=”header ”/>
</xsl:copy>

</xsl:template>
<xsl:template match=”msg:header ” mode=”message” />
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75 <xsl:template match=”msg:header [ not ( s t r i n g ( @access name ) ) ] ” mode=”header ”>
<xsl:apply−templates s e l e c t=”msg:∗” mode=”header ”/>

</xsl:template>

<xsl:template match=”msg:content | msg:viewdata | msg:conta iner | msg:conta iner−re f ”
mode=”header ”>

80 <xsl:apply−templates s e l e c t=” . ” mode=”message”/>
</xsl:template>

<xsl:template match=”msg:∗” mode=”header ” />

85 <!−− me s s a g e c o n t e n t −−>
<xsl:template match=”msg:content | msg:viewdata ” mode=”message”>

<xsl:copy>
<xsl:apply−templates s e l e c t=”@∗” mode=” copyattr ”/>

</xsl:copy>
90 </xsl:template>

<xsl:template match=”msg:conta iner [ s t r i n g ( @access name ) ] ” mode=”message”>
<xsl:copy>

<xsl:apply−templates s e l e c t=”@access name |@type name” mode=” copyattr ”/>
95 <xsl:apply−templates mode=”message”/>

</xsl:copy>
</xsl:template>

<xsl:template match=”msg:conta iner ” mode=”message”>
100 <xsl:apply−templates mode=”message”/>

</xsl:template>

<xsl:template match=”msg:conta iner−re f [ s t r i n g ( @access name ) ] ” mode=”message”>
<msg:conta iner>

105 <xsl:apply−templates s e l e c t=”@access name |@type name” mode=” copyattr ”/>
<xs l :var iable name=”typename” s e l e c t=”@type name”/>
<xsl:apply−templates

s e l e c t=” ance s to r : :msg :mes sage h i e ra r chy /msg:conta iner [ @type name = $
typename ]/ msg:∗”

mode=”message”/>
110 </msg:conta iner>

</xsl:template>

<xsl:template match=”msg:conta iner−re f ” mode=”message”>
<xs l :var iable name=”typename” s e l e c t=”@type name”/>

115 <xsl:apply−templates
s e l e c t=” ance s to r : :msg :mes sage h i e ra r chy /msg:conta iner [ @type name = $

typename ]/ msg:∗”
mode=”message”/>

</xsl:template>
</ xs l : s ty lesheet>
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